MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning

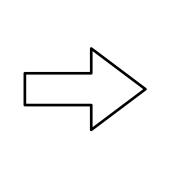
Ji Lin¹, Wei-Ming Chen¹, Han Cai¹, Chuang Gan², Song Han¹

¹ Massachusetts Institute of Technology ² MIT-IBM Watson AI Lab

Deep Learning Going "Tiny"

IIANI_AI=

Deep Learning Going "Tiny"

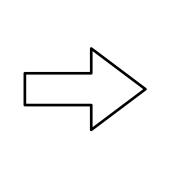


Cloud Al

Data centers Expensive Privacy issue

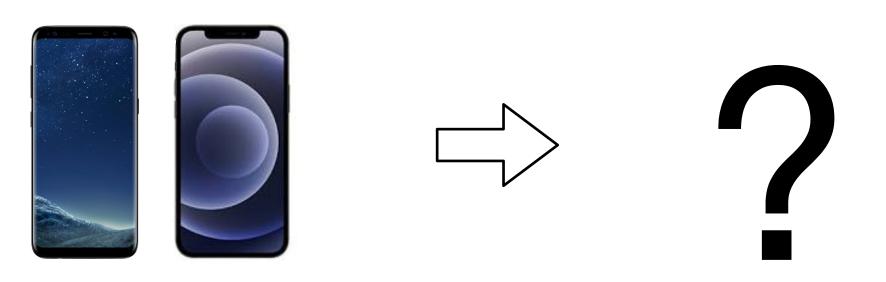
Mobile Al Smartphones Accessible **Process locally**

Deep Learning Going "Tiny"



Cloud Al

Data centers Expensive Privacy issue



Mobile Al

Smartphones Accessible **Process locally**

Can we go even smaller?

Can we go even smaller?

- The future belongs to Tiny AI.

- The future belongs to Tiny AI.
- Billions of <u>IoT devices</u> around the world based on <u>microcontrollers</u>

Smart Home

Plii

Smart Manufacturing

Personalized Healthcare

IIANI_AI=

tinyml.mit.edu

- The future belongs to Tiny AI.
- Billions of <u>IoT devices</u> around the world based on <u>microcontrollers</u>
- Low-cost: low-income people can have access. Democratize AI.

Smart Home

Plii

Smart Manufacturing

Personalized Healthcare

Driving Assist

tinyml.mit.edu

- The future belongs to Tiny AI.
- Billions of <u>IoT devices</u> around the world based on <u>microcontrollers</u>
- Low-cost: low-income people can have access. Democratize AI.
- Low-power: reduce carbon. Green Al.

Smart Home

Plii

Smart Manufacturing

Personalized Healthcare

Driving Assist

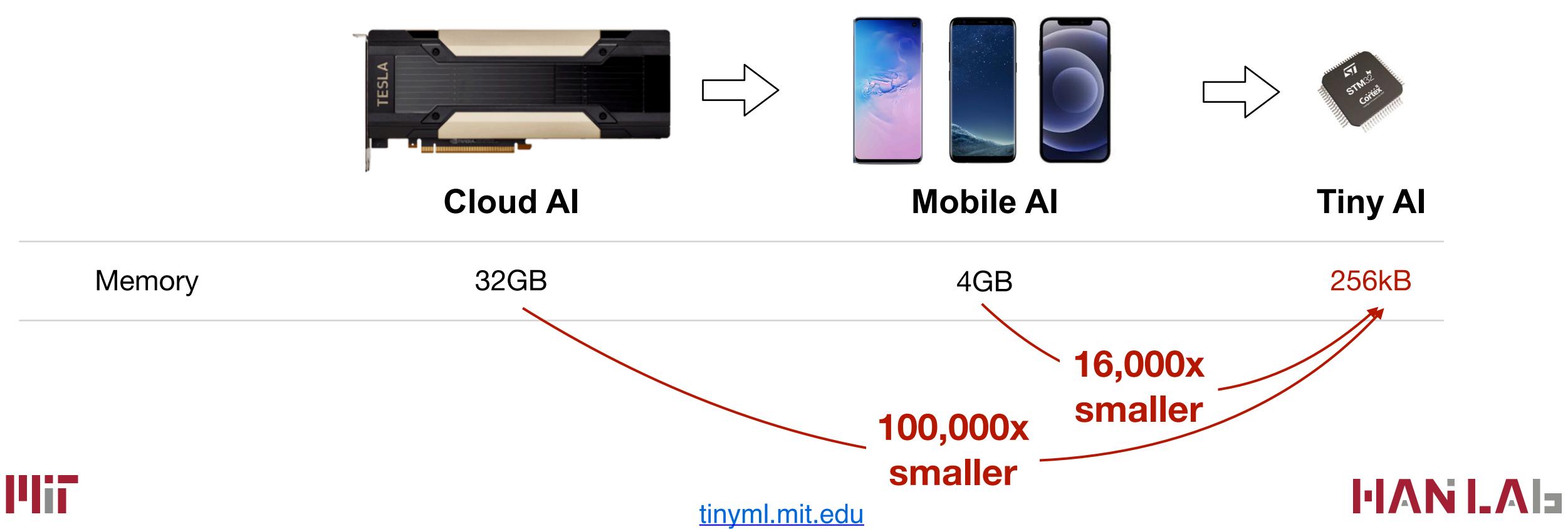
I AN LAS

tinyml.mit.edu

- Tiny model design is fundamentally different from mobile AI, due to limited memory.

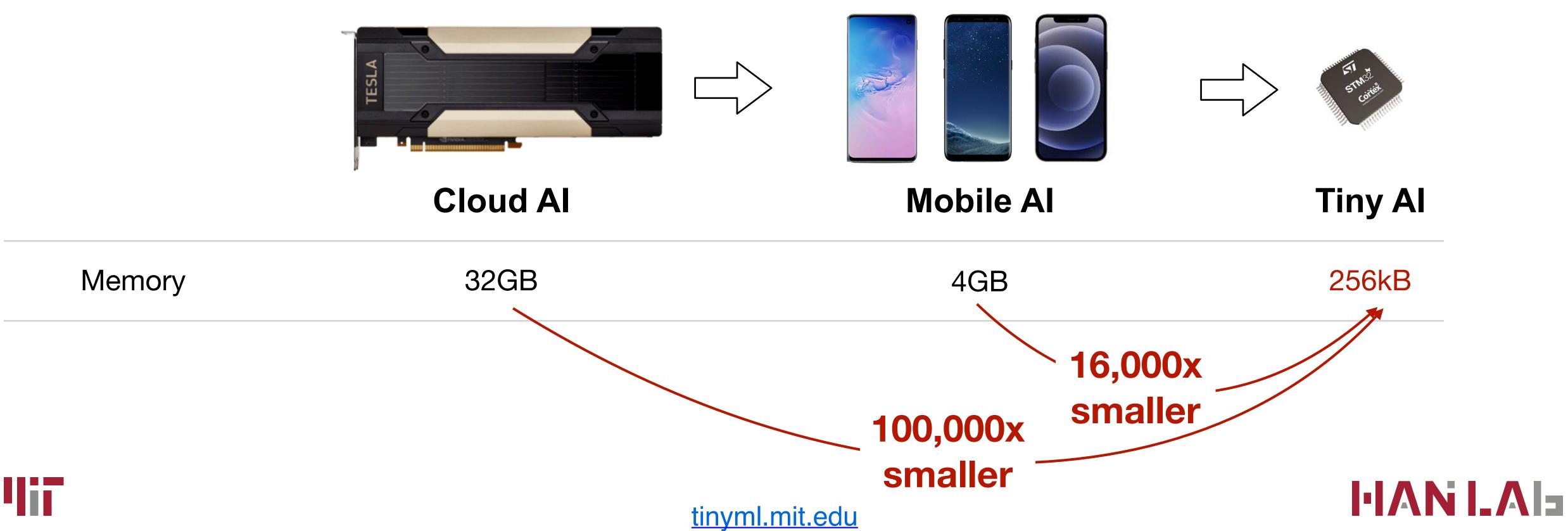
But Tiny Al is Difficult

- Tiny model design is <u>fundamentally different</u> from mobile AI, due to <u>limited memory</u>.



But Tiny Al is Difficult

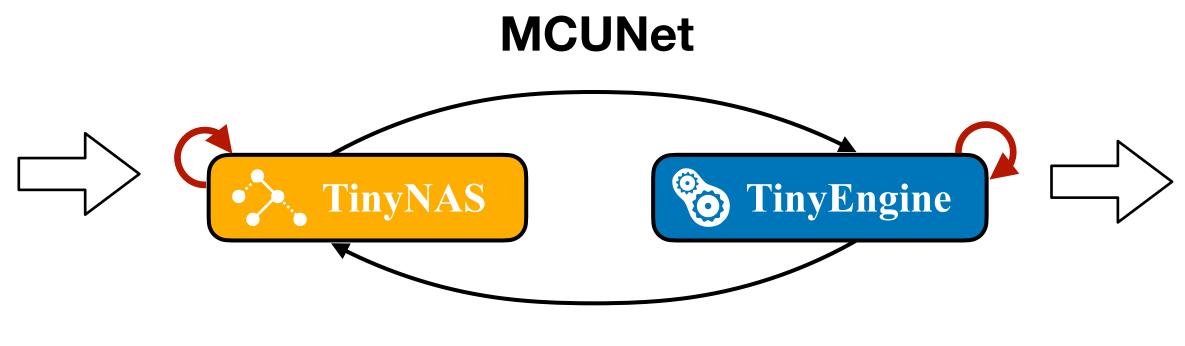
- Tiny model design is fundamentally different from mobile AI, due to limited memory.
- Existing work optimize for #parameters/#FLOPs, but <u>#activation</u> is the real bottleneck.
- CANNOT directly scale.



But Tiny Al is Difficult

Breaking the Memory Bottleneck of TinyML

Toy applications

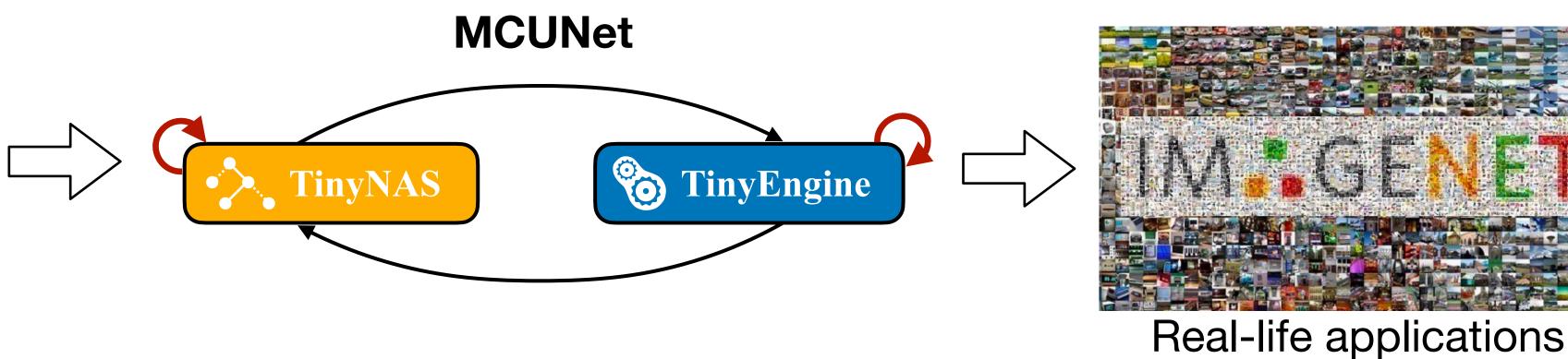


* Lin et al., MCUNet: Tiny Deep Learning on IoT Devices

Real-life applications

Breaking the Memory Bottleneck of TinyML

Toy applications

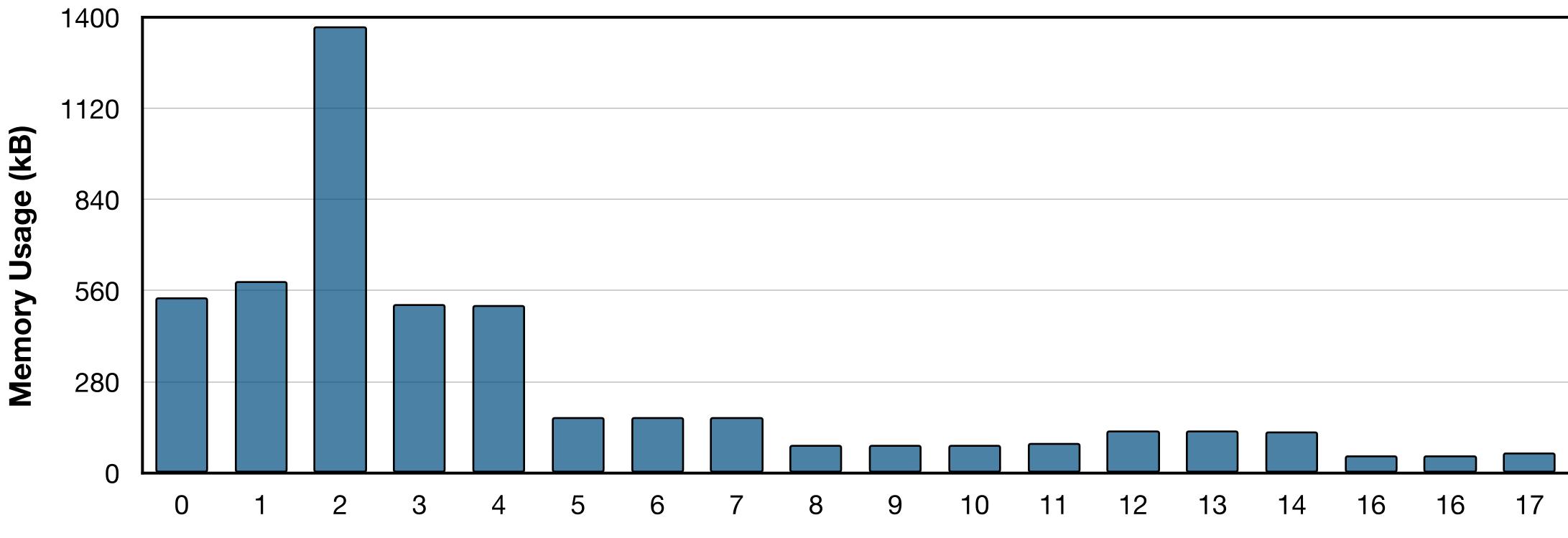


- Problems:
 - Insufficient/imbalanced memory utilization across blocks

* Lin et al., MCUNet: Tiny Deep Learning on IoT Devices

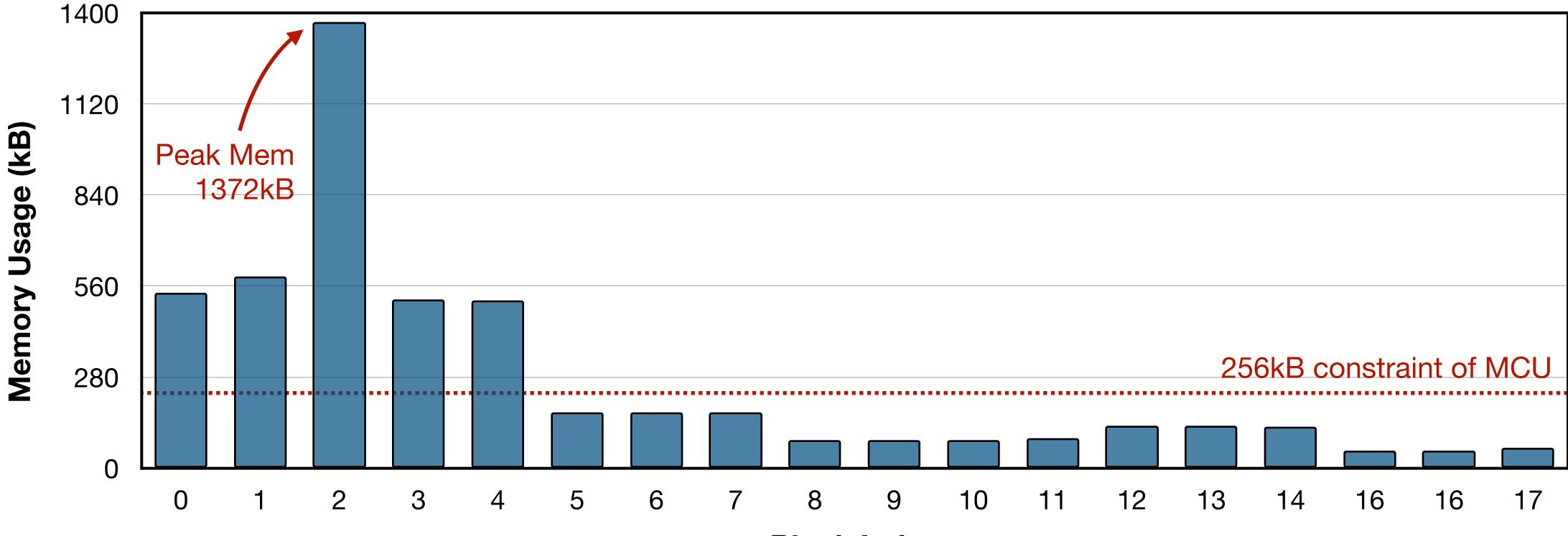
- Poor performance on applications beyond classification (e.g., detection)

Per-block memory usage of MobileNetV2



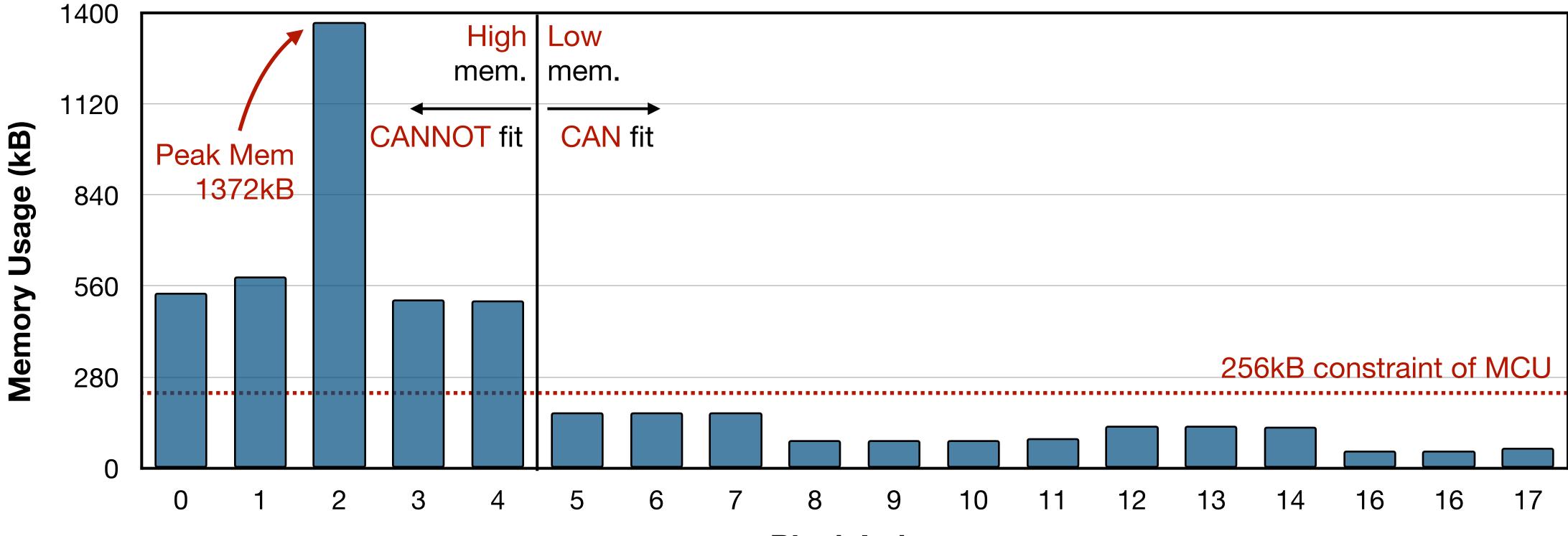
Block Index

Per-block memory usage of MobileNetV2



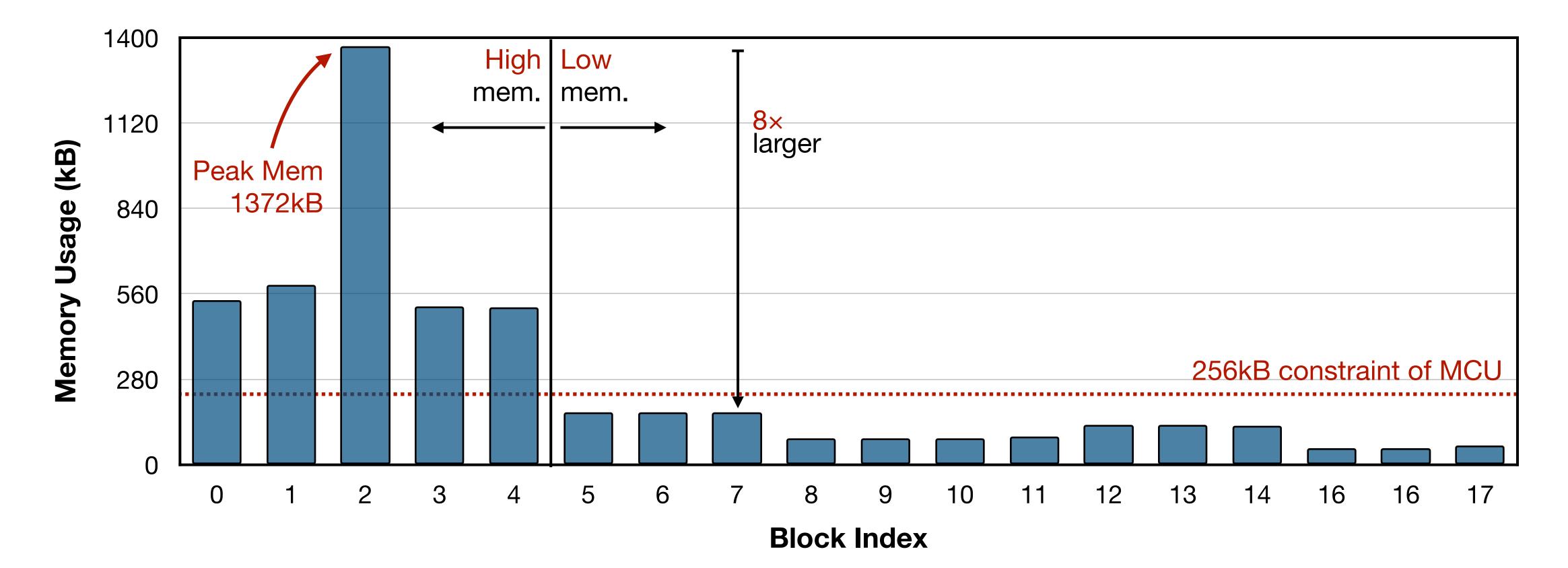
Block Index

Per-block memory usage of MobileNetV2



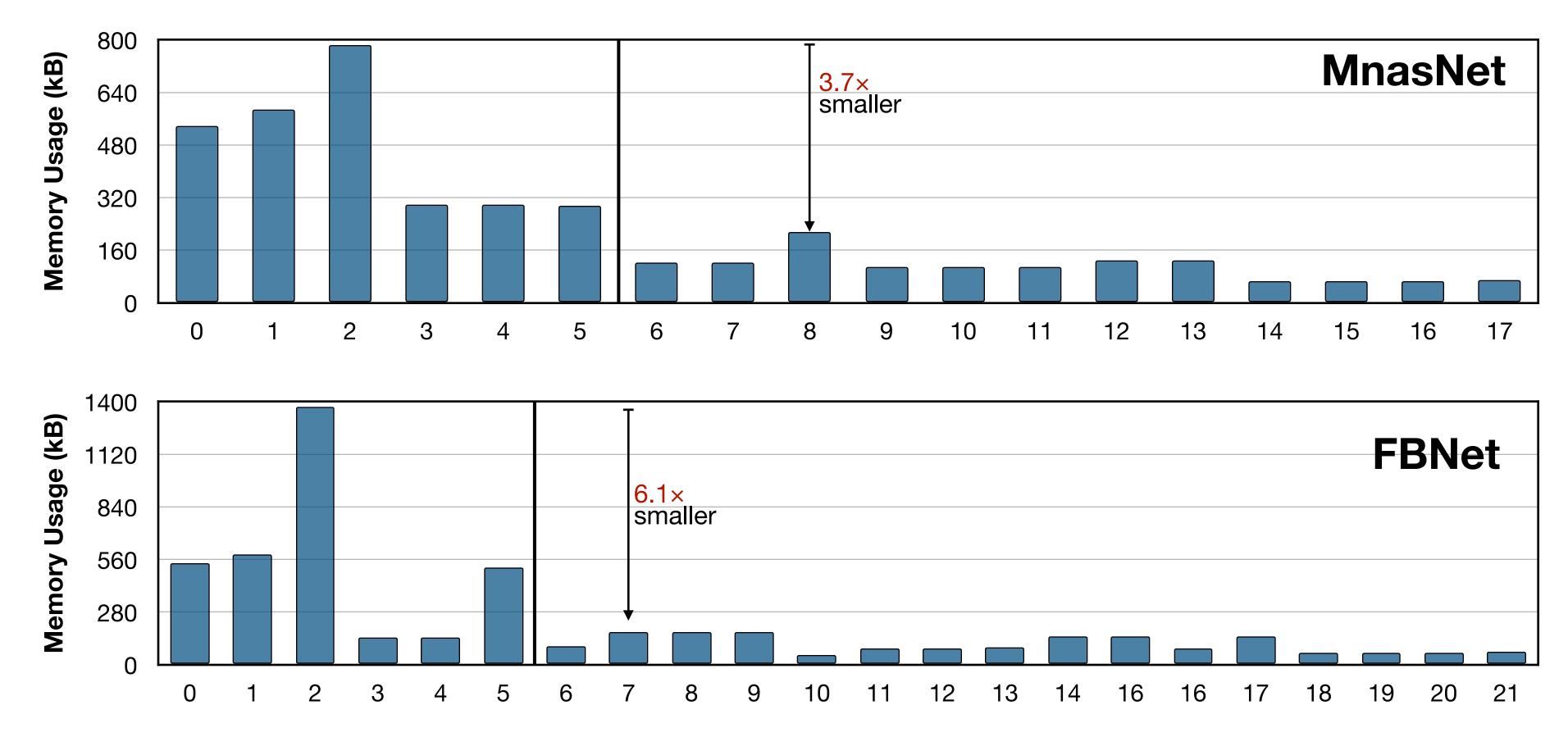
Block Index

Per-block memory usage of MobileNetV2

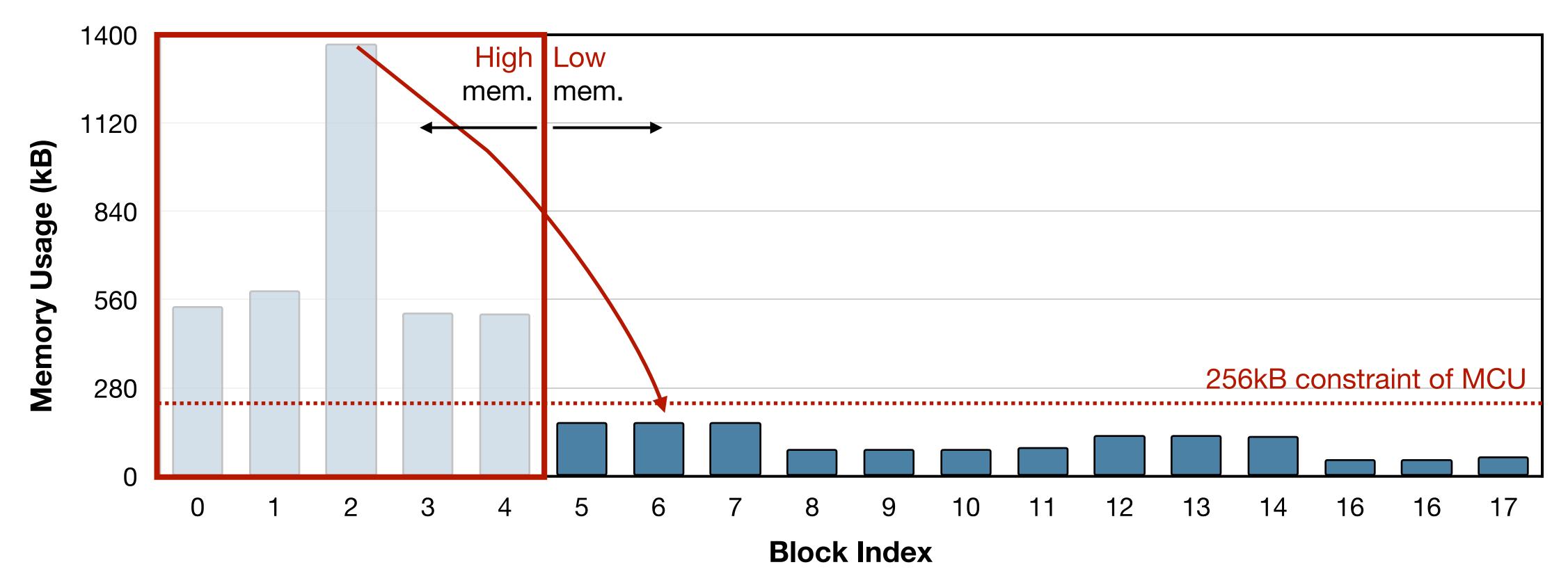


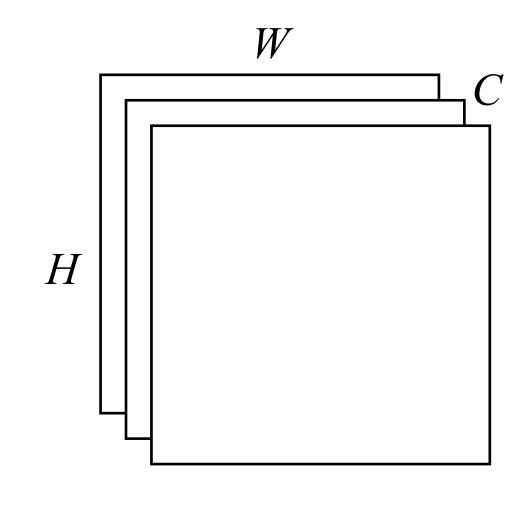
I-IANI_AI=

Common case in efficient CNN design ullet

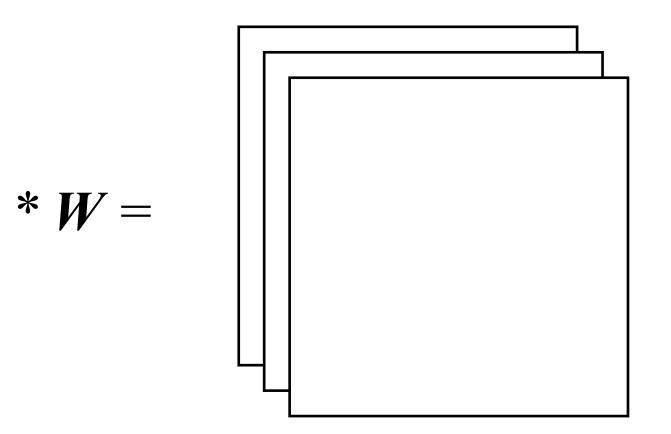


Reduce memory usage of the initial stage -> Reduce the overall memory usage

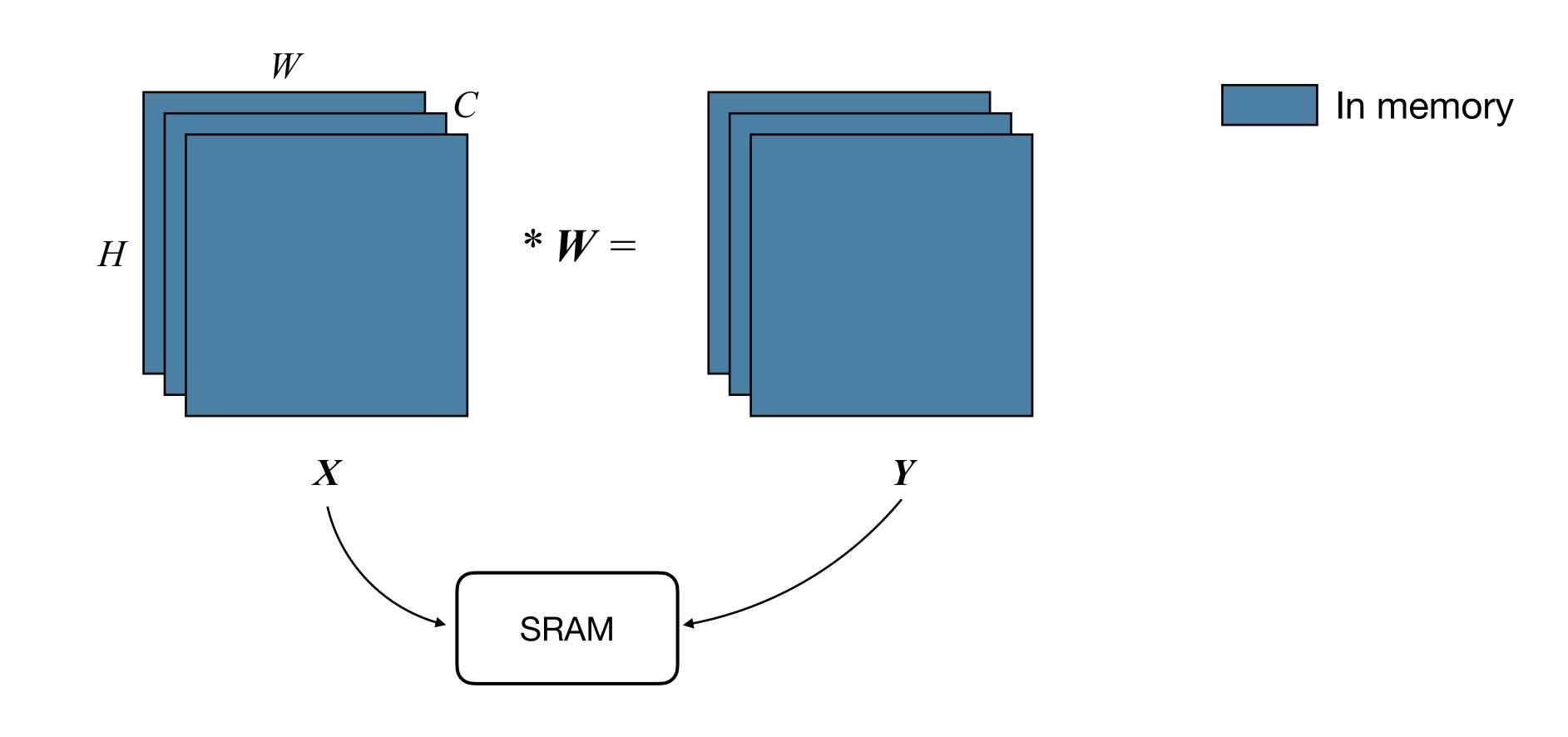


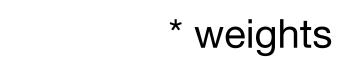


 \boldsymbol{X}



Y



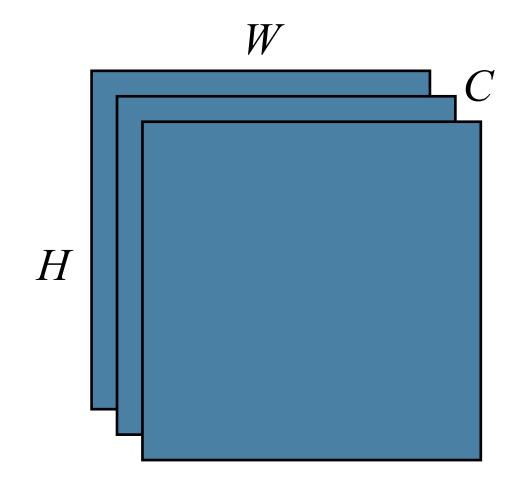


* weights are usually partially fetched from Flash

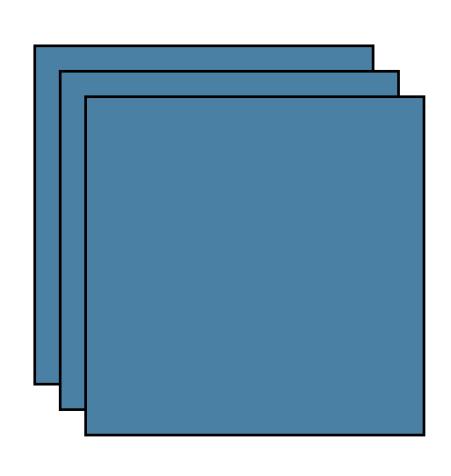
* W =

1. Per-layer inference

Peak Mem = 2 WHC



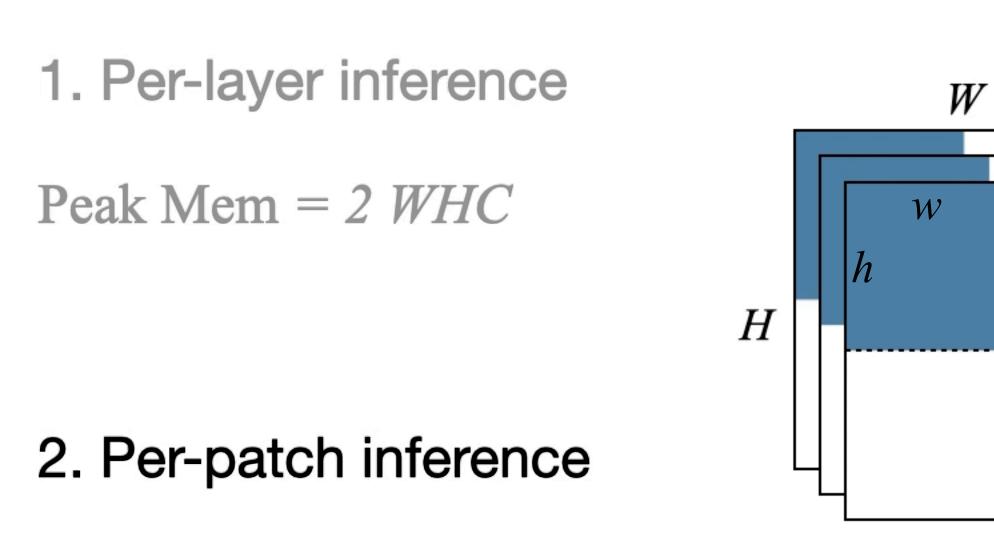
X



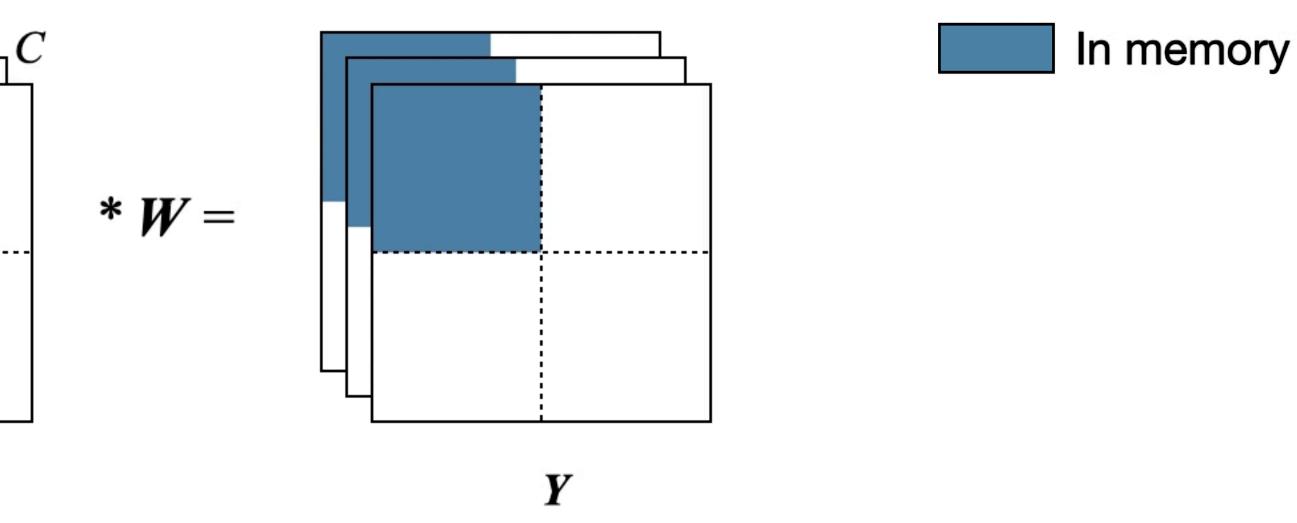
In memory

Y

X

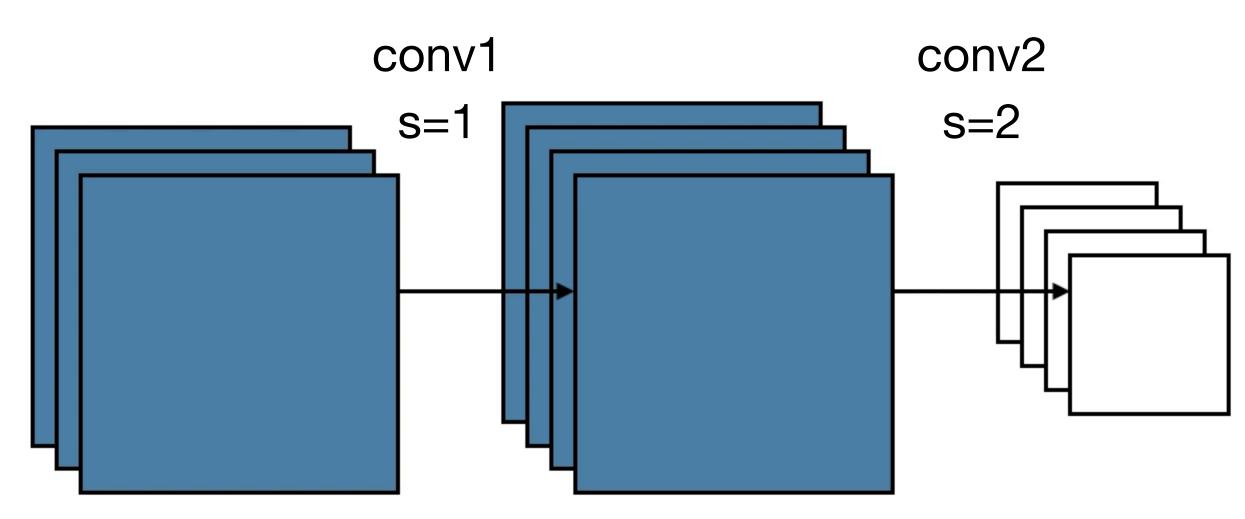


Peak Mem = $2 whC \le 2WHC$



* can use more than 2x2 patches

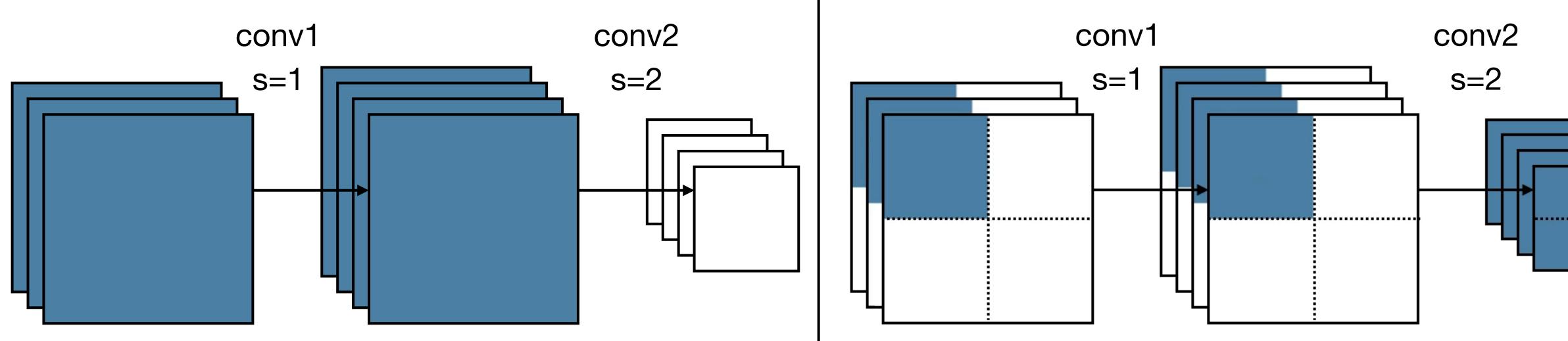
• a practical 2-layer example



Layer 1 per-layer inference

In memory

• a practical 2-layer example

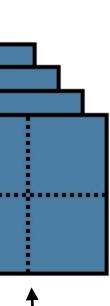


per-layer inference

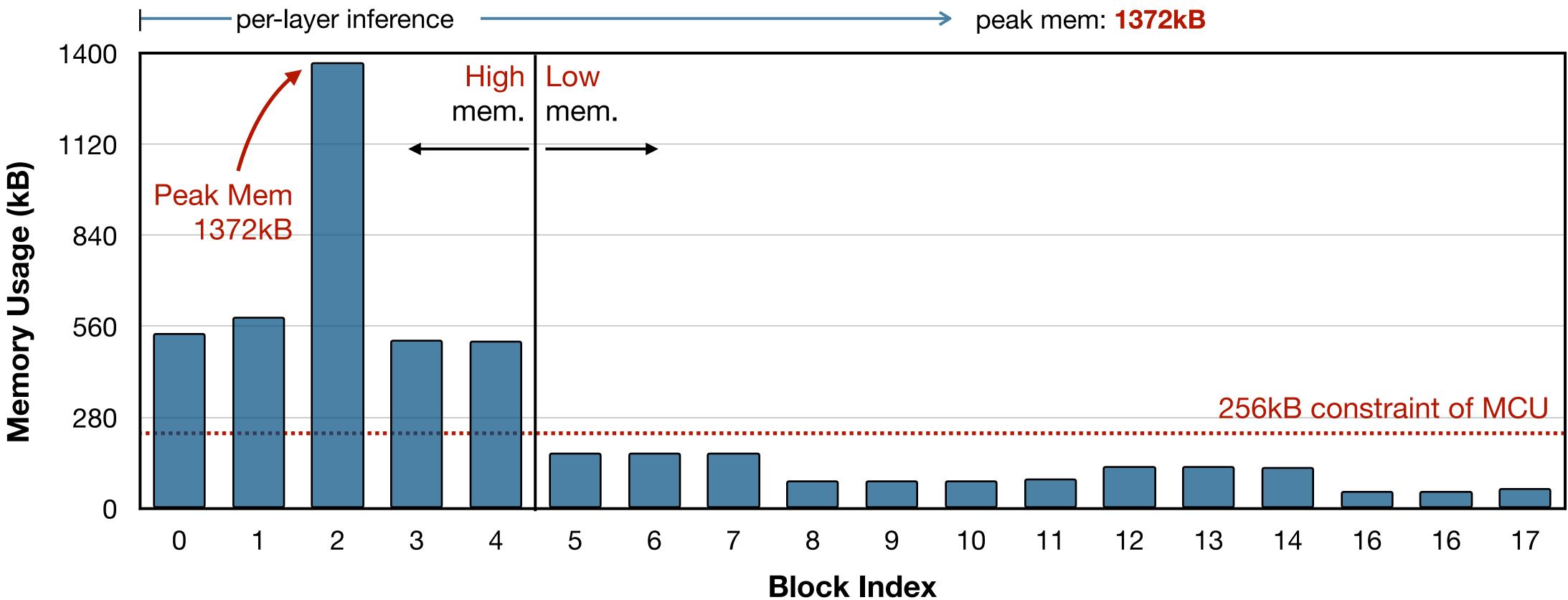
per-patch inference

*need to hold entire output (much smaller than previous layers)

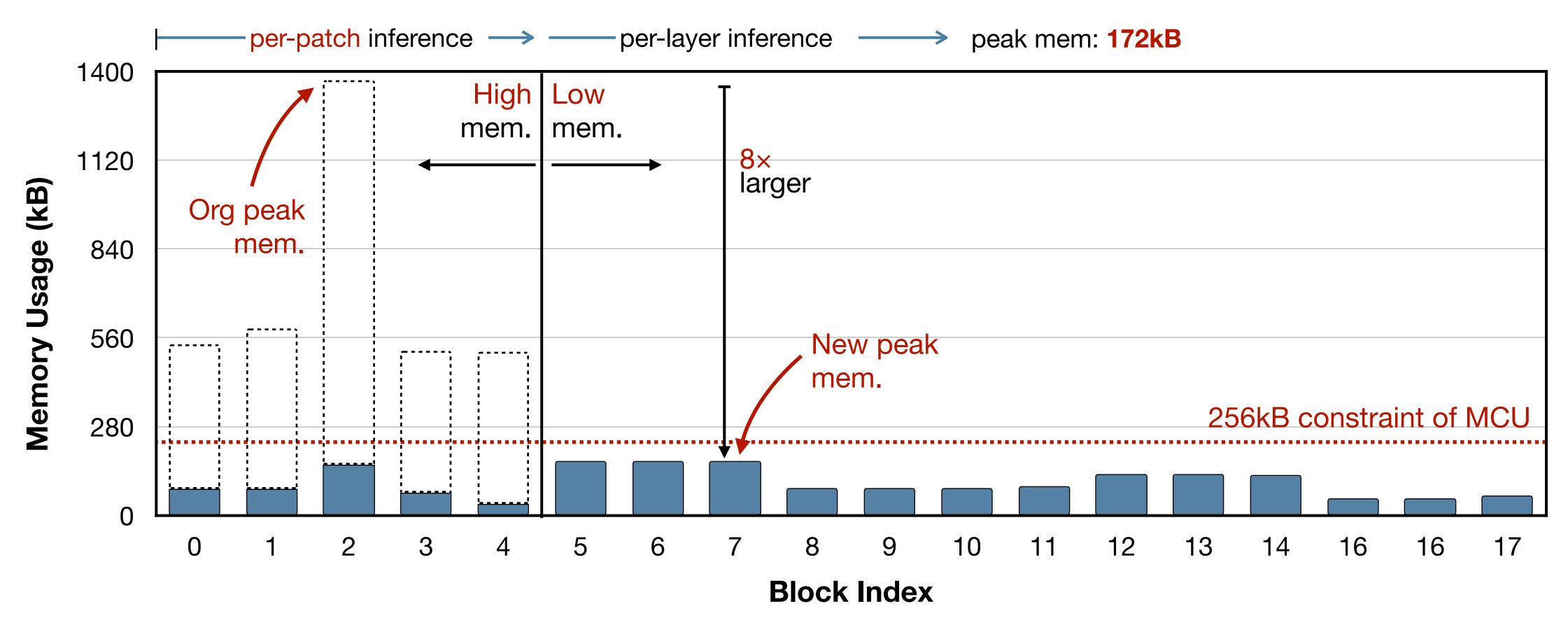
In memory



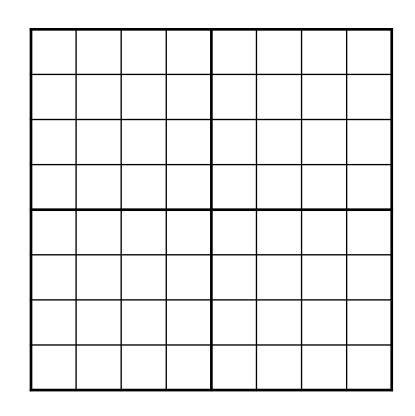
Applying to MobileNetV2

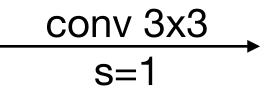


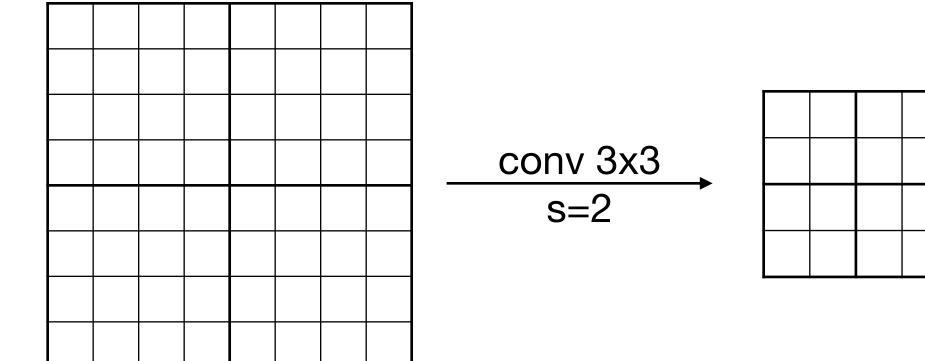
Applying to MobileNetV2



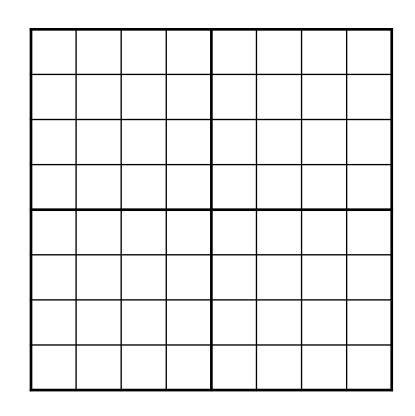
• Using 2x2 patches

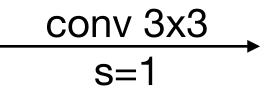


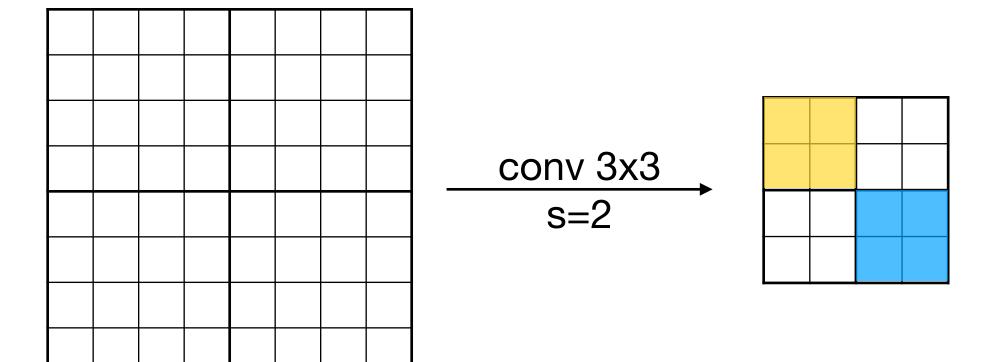




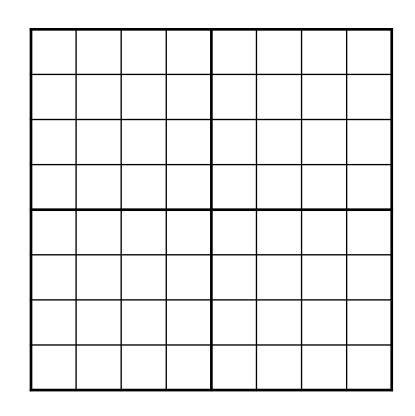
• Using 2x2 patches

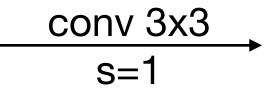


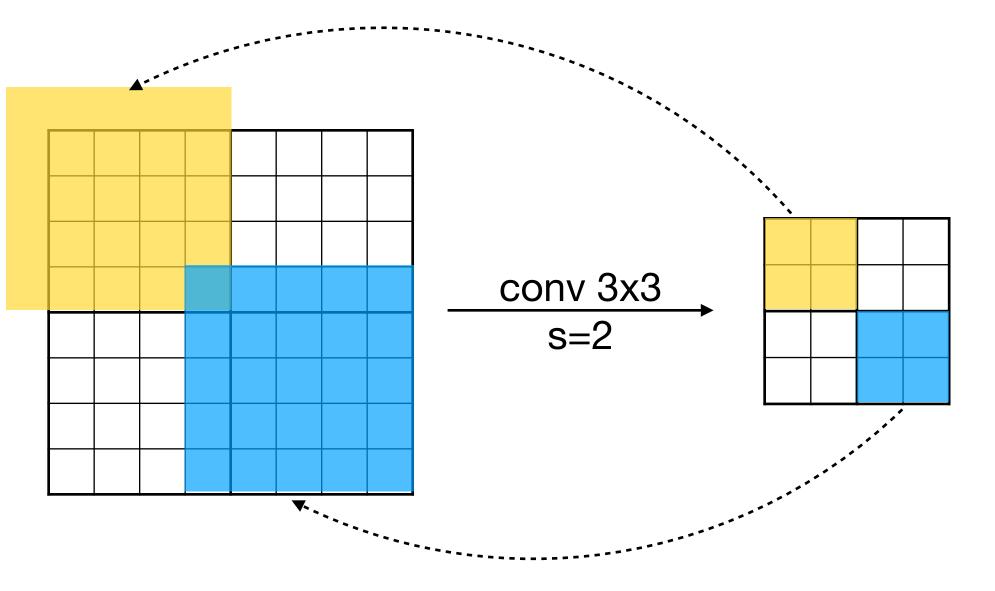


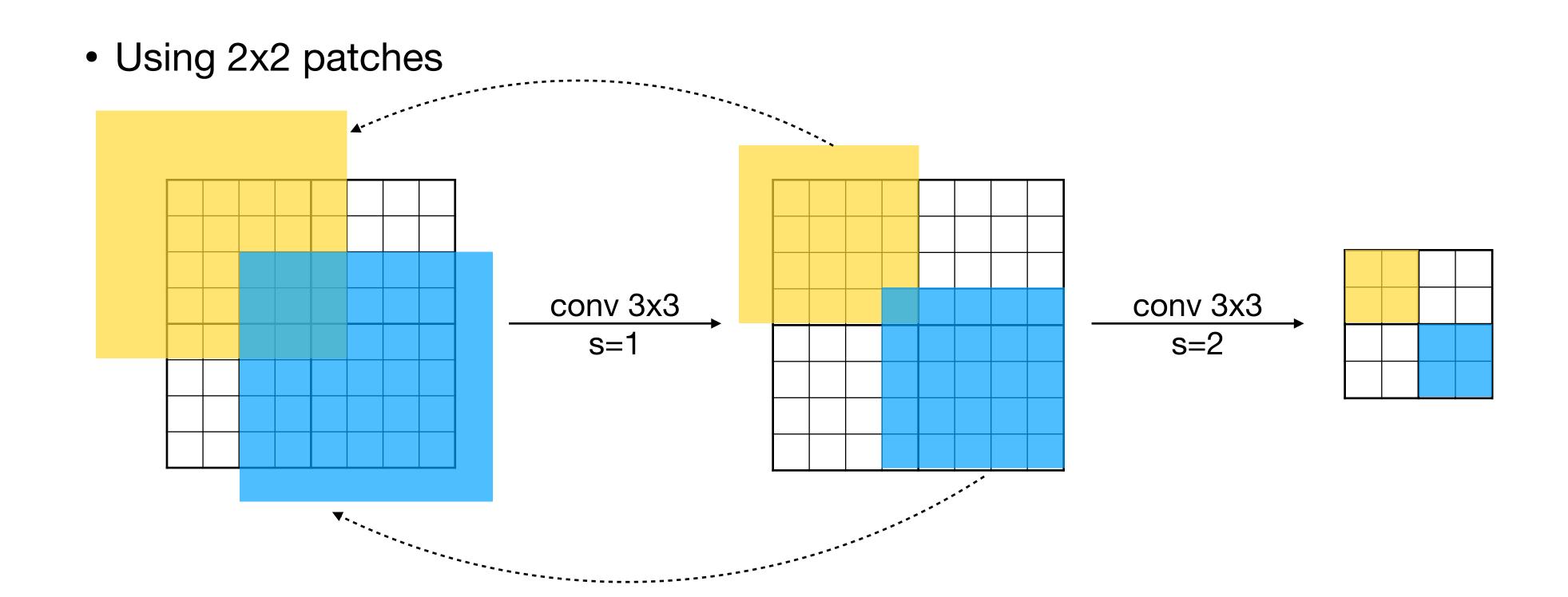


• Using 2x2 patches

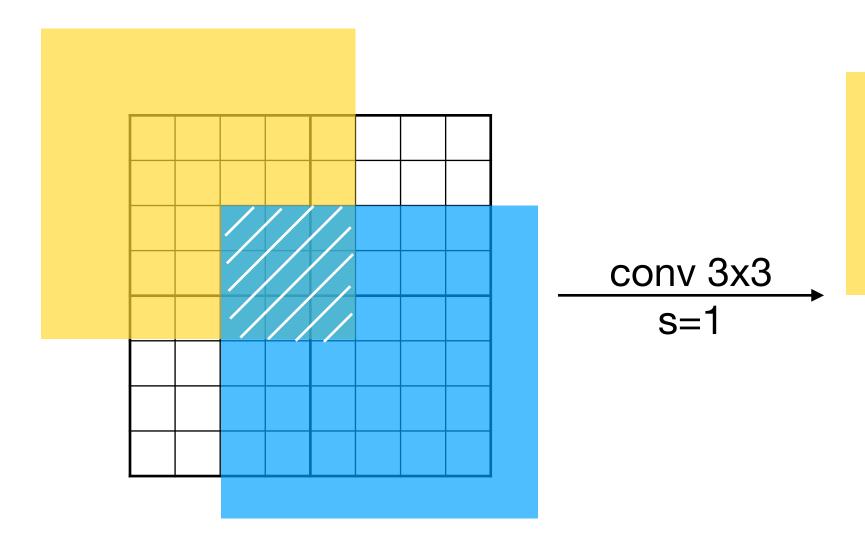


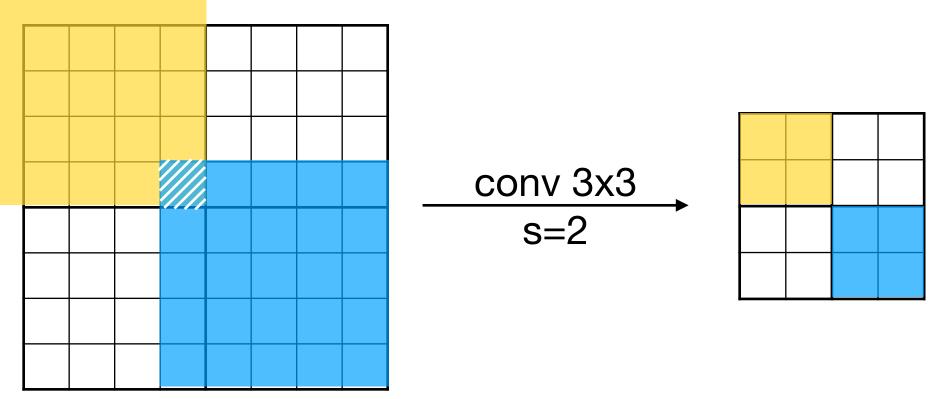




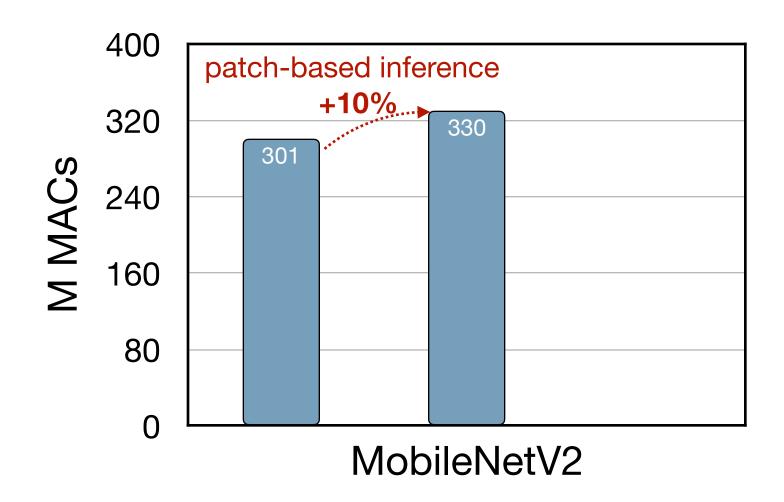


• Using 2x2 patches



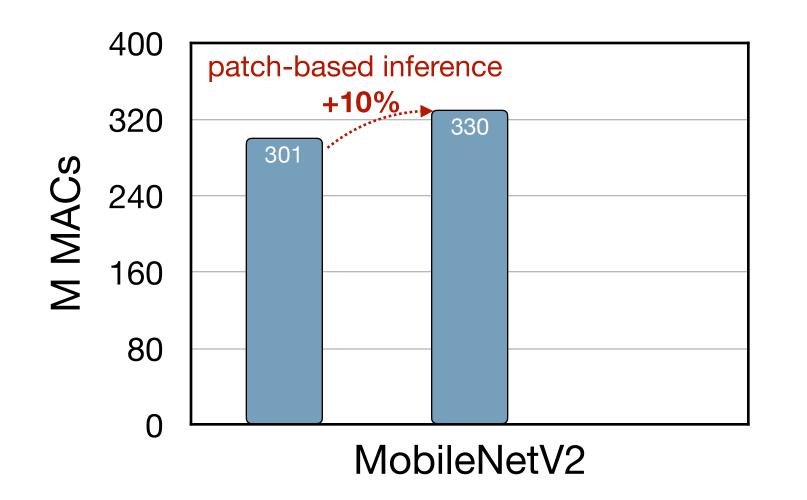


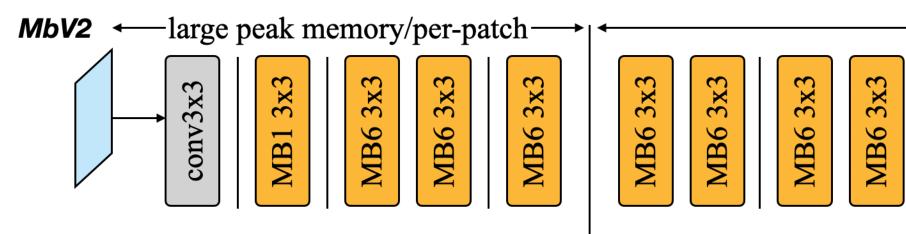
Spatial overlapping gets larger as **receptive field** grows!



I-IANI_AI=

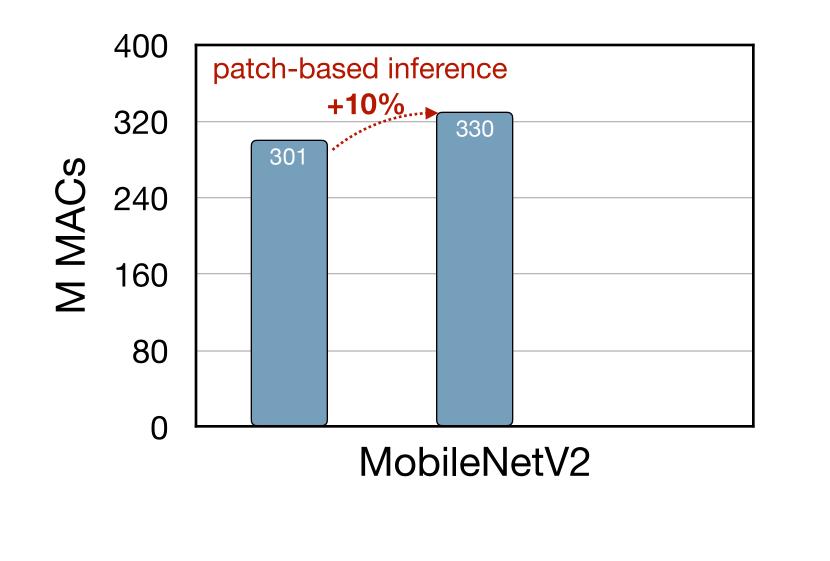
2. Network Redistribution to Reduce Overhead

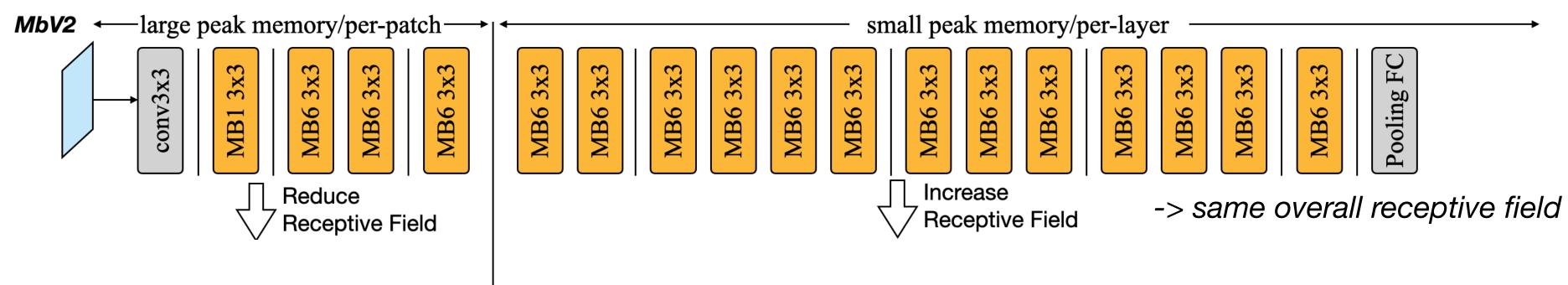




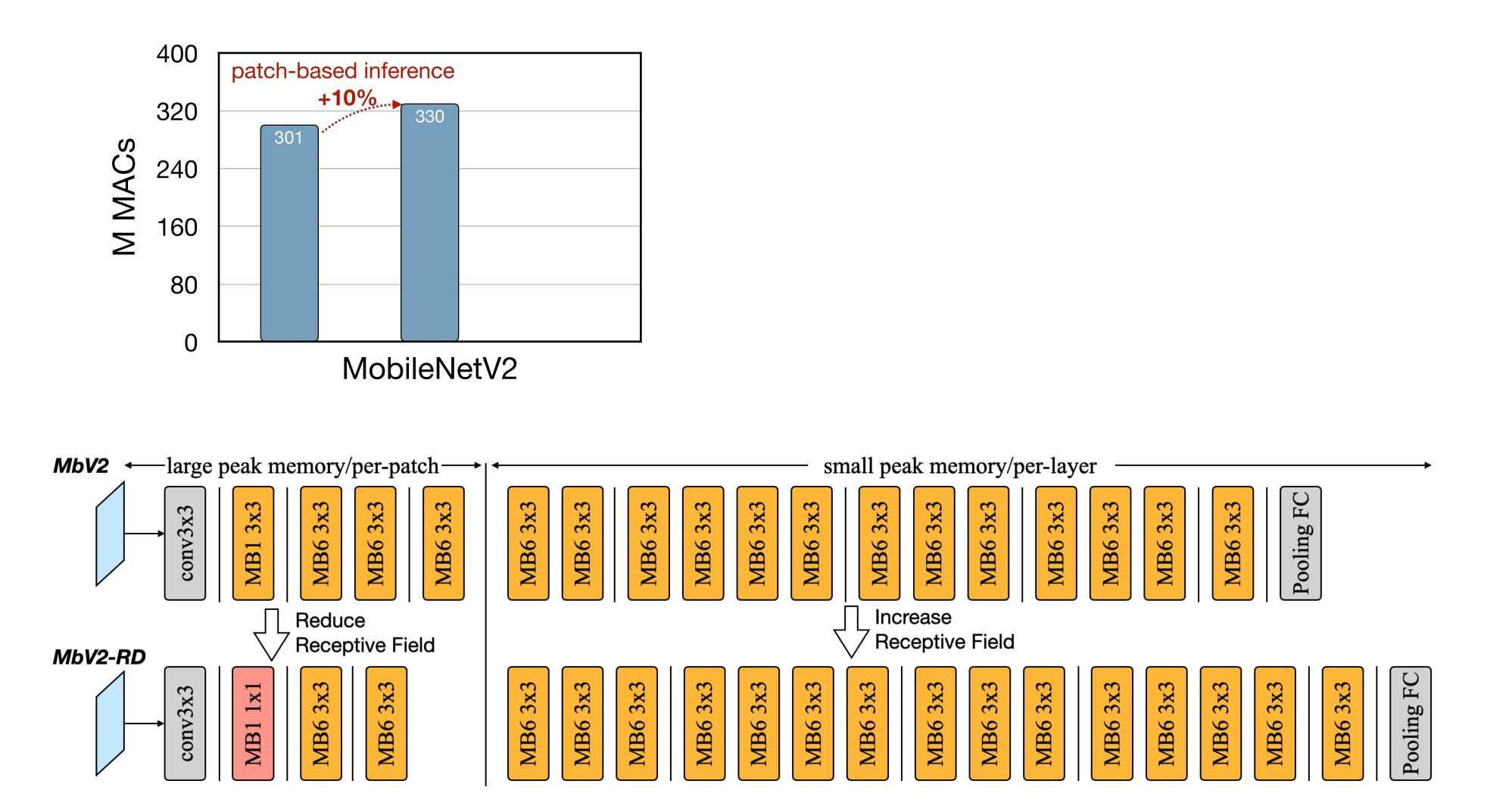
small peak memory/per-layer Pooling FC MB6 3x3 3x3 3x3 3x3 3x3 MB6 3x3 **MB6 3x3** MB6 3x3 **MB6 3x3** MB6 MB6 MB6 MB6

2. Network Redistribution to Reduce Overhead

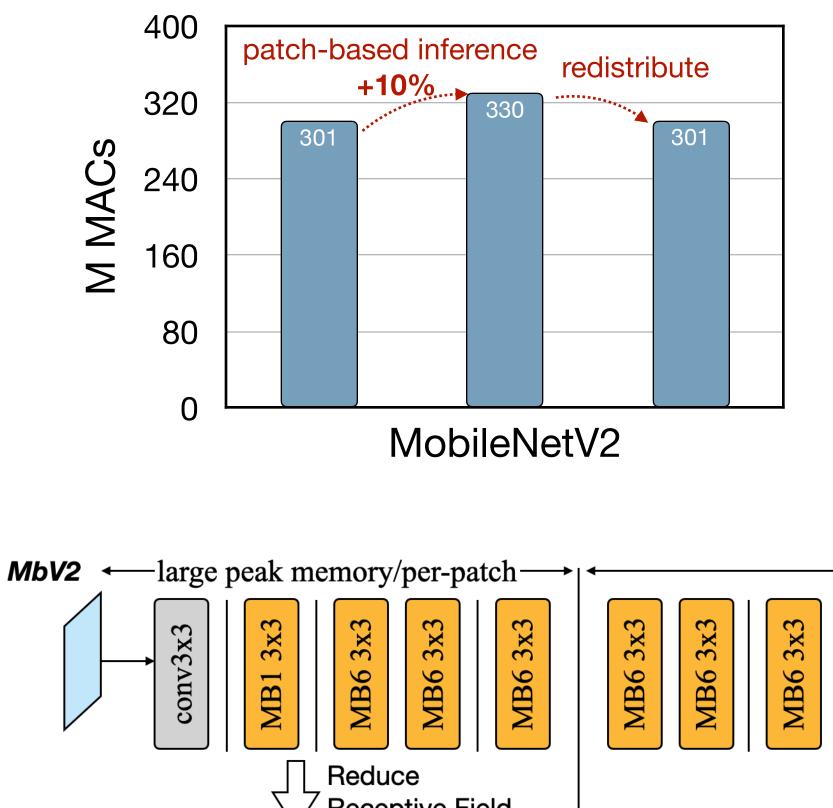


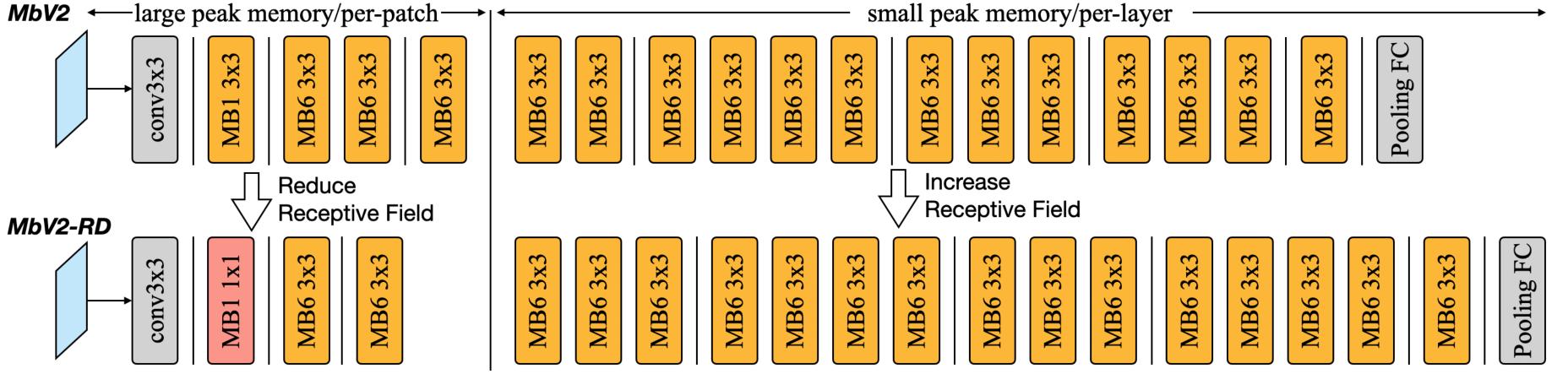


2. Network Redistribution to Reduce Overhead



2. Network Redistribution to Reduce Overhead



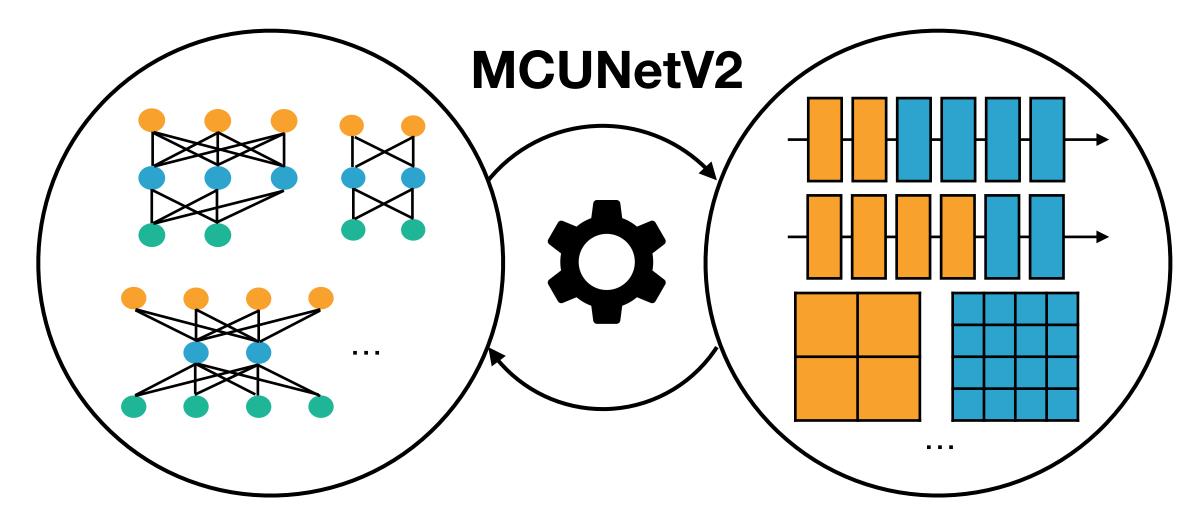


Same performance on:

- Image classification
- Object detection
- \bullet

Negligible overhead

3. Joint Automated Search for Optimization



Neural architecture

#layers #channels kernel size

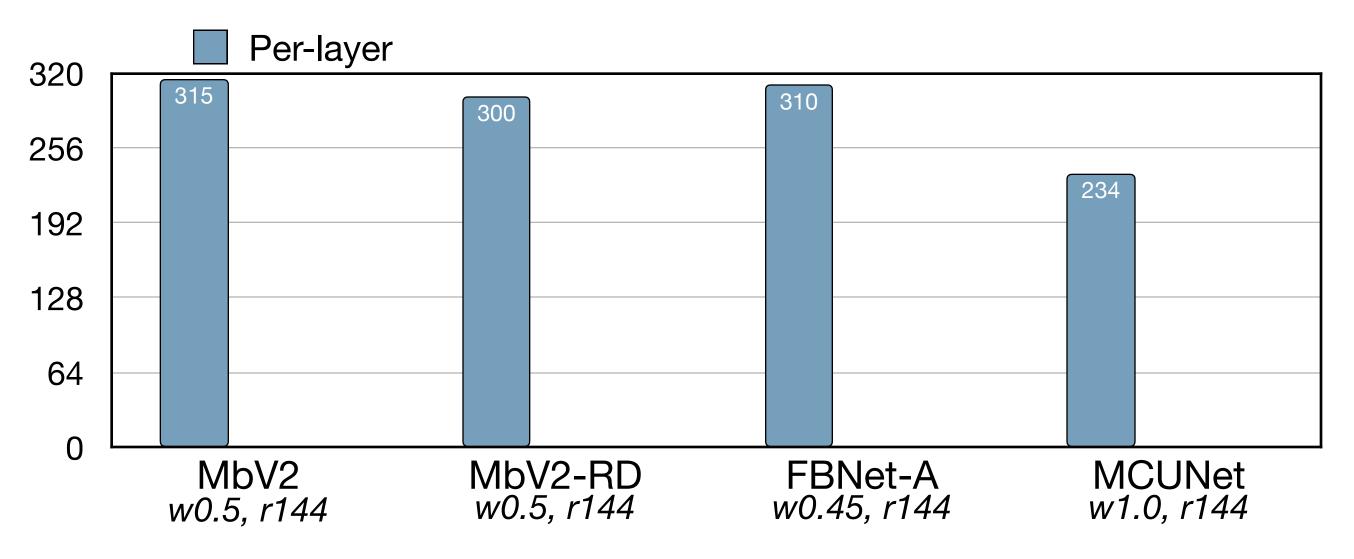
. . .

* Lin et al., MCUNet: Tiny Deep Learning on IoT Devices

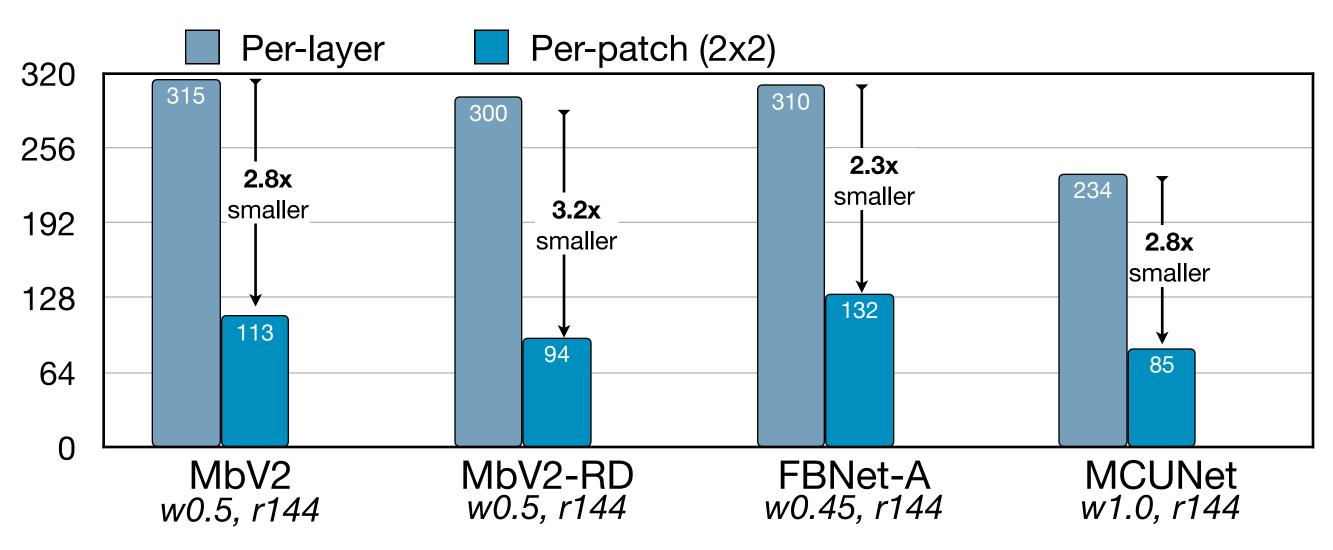
Inference scheduling #patches #layers for patch-based other knobs from TinyEngine*

. . .

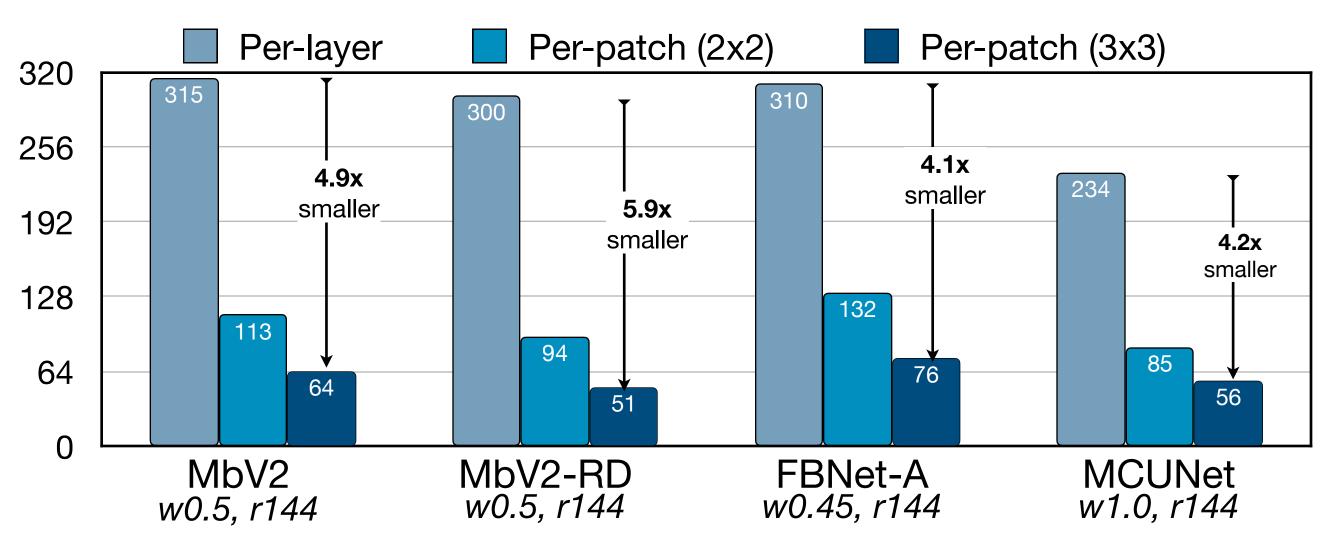
- Baseline: TinyEngine, the SOTA system stack for tinyML
- Measured on STM32F746 MCU



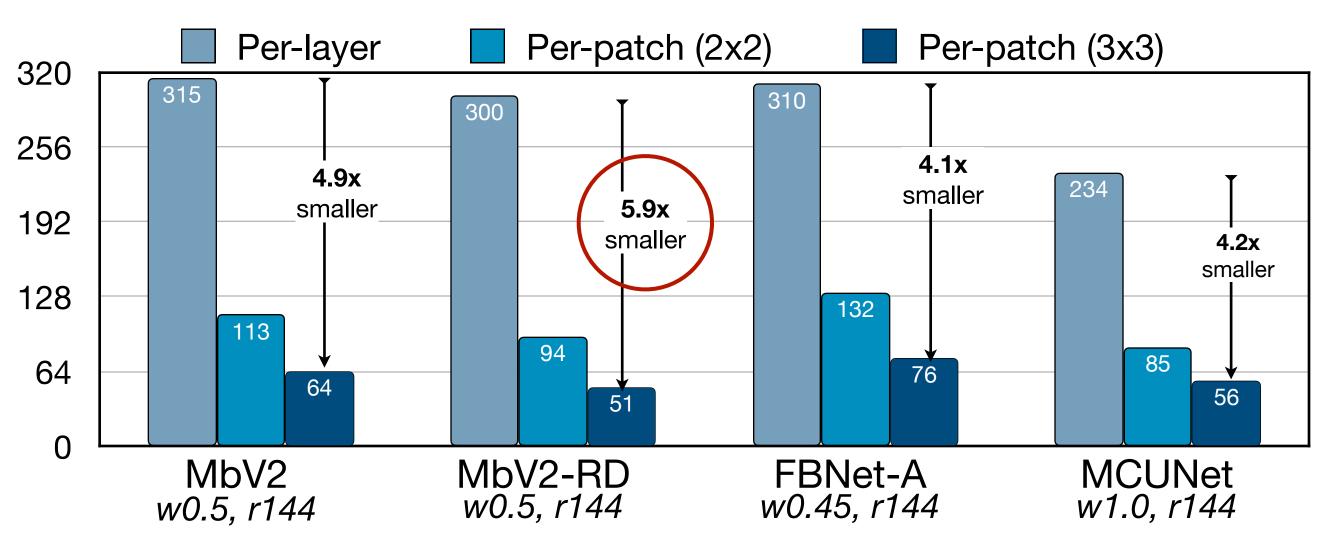
- Baseline: TinyEngine, the SOTA system stack for tinyML
- Measured on STM32F746 MCU



- Baseline: TinyEngine, the SOTA system stack for tinyML
- Measured on STM32F746 MCU

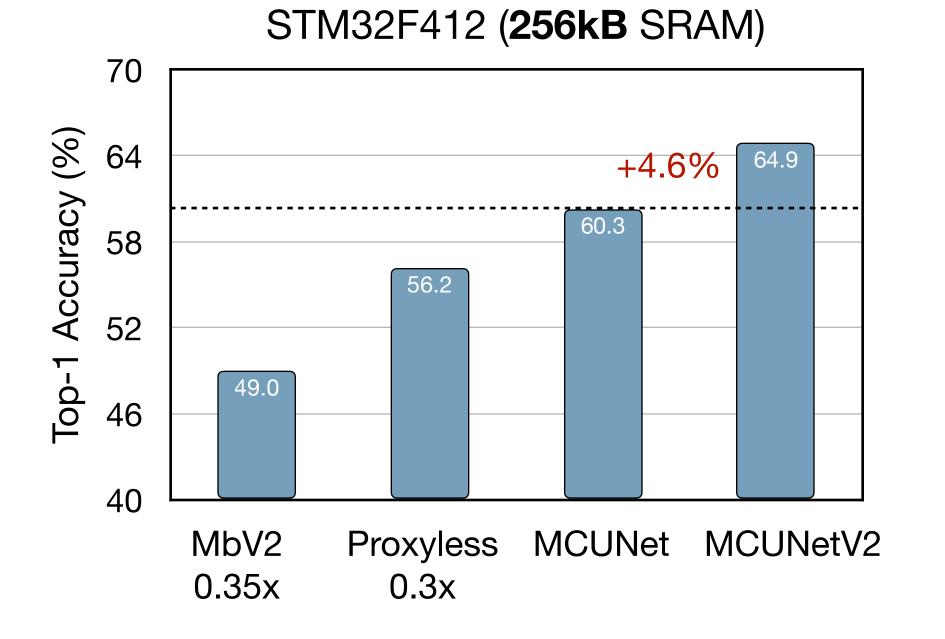


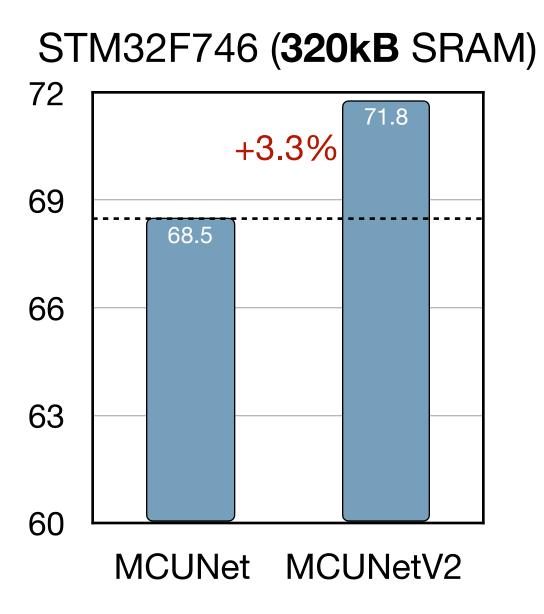
- Baseline: TinyEngine, the SOTA system stack for tinyML
- Measured on STM32F746 MCU



MCUNetV2 for Tiny Image Classification

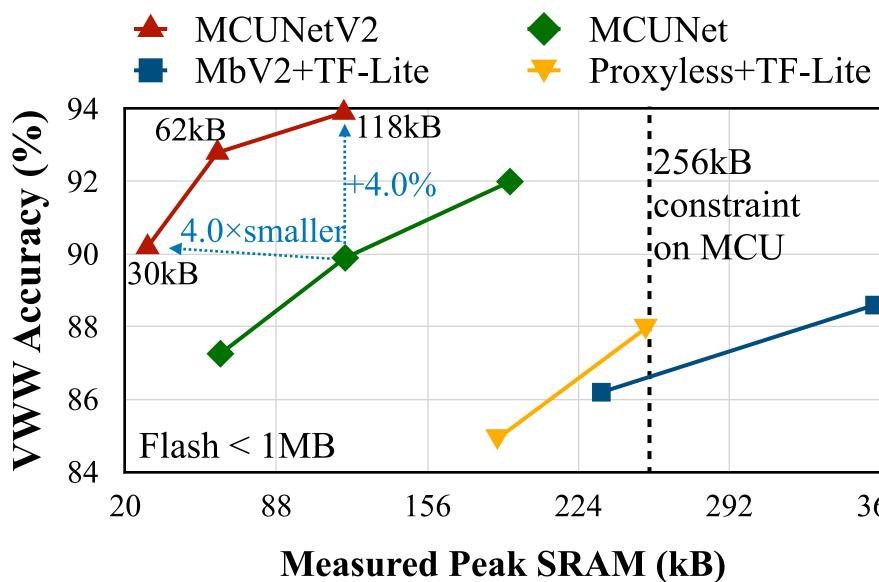
- Large-scale **ImageNet** classification lacksquare
- Models are quantized to int8
- Serving using TinyEngine.





MCUNetV2 for Tiny Image Classification

- TinyML application: Visual Wake Words (VWW) •
- Higher accuracy, lower SRAM



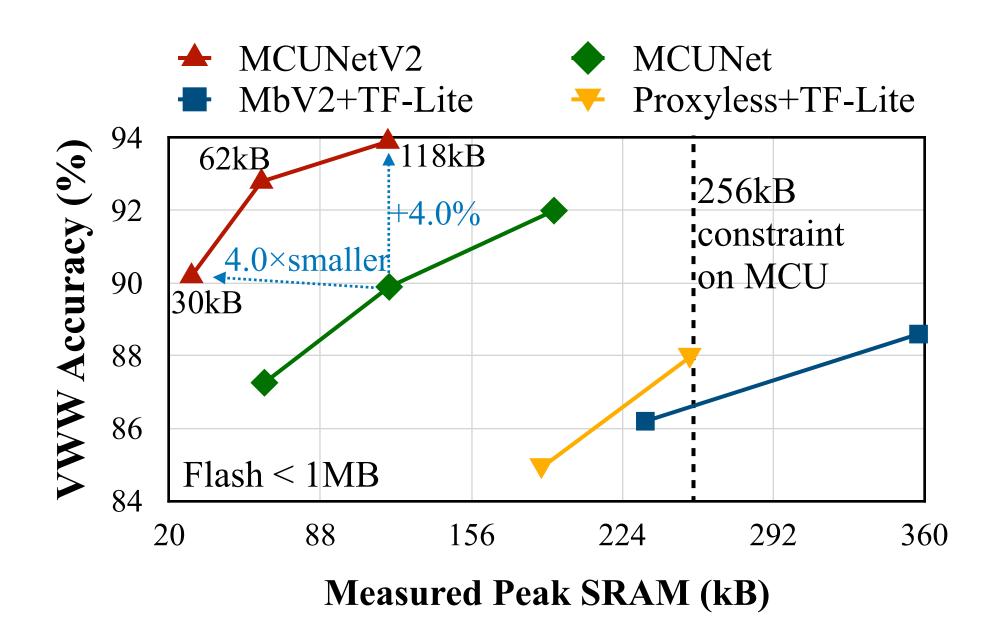
(a) 'Person'

(b) 'Not-person'

360

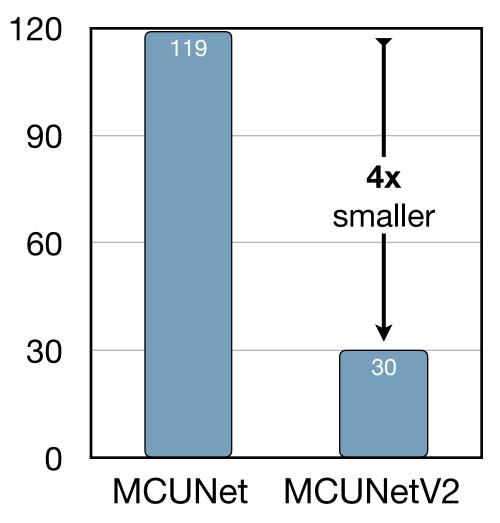
MCUNetV2 for Tiny Image Classification

- TinyML application: Visual Wake Words (VWW) •
- Higher accuracy, lower SRAM



(a) 'Person'

(b) 'Not-person'



• Object detection is more sensitive to input resolution

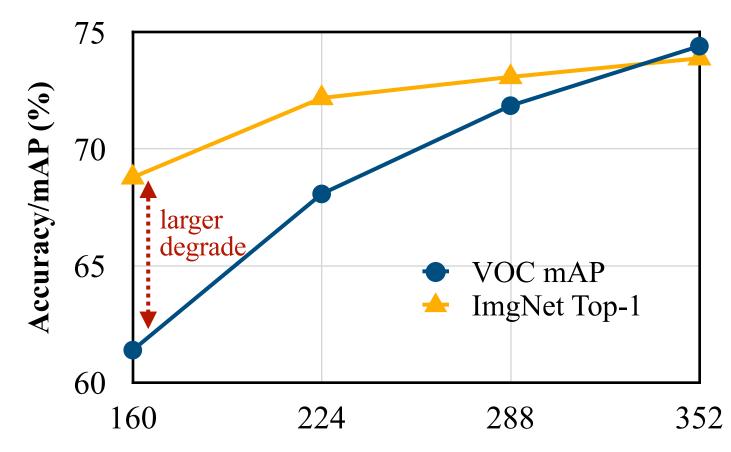
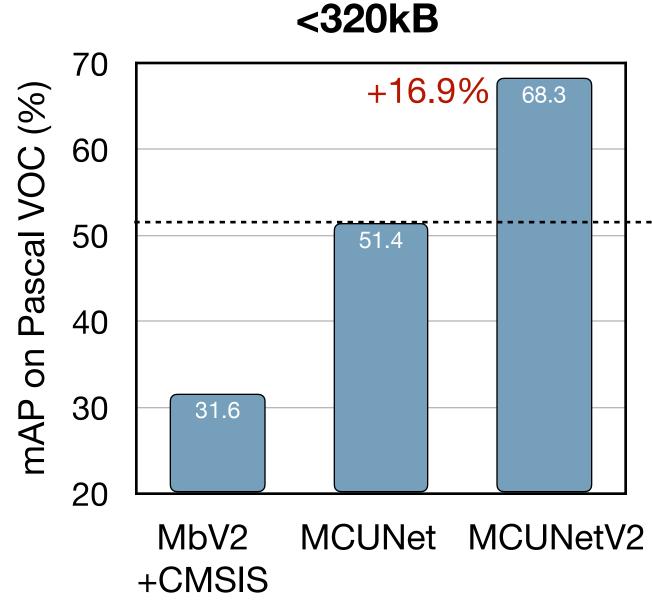


Image Resolution

- Object detection is more sensitive to input resolution

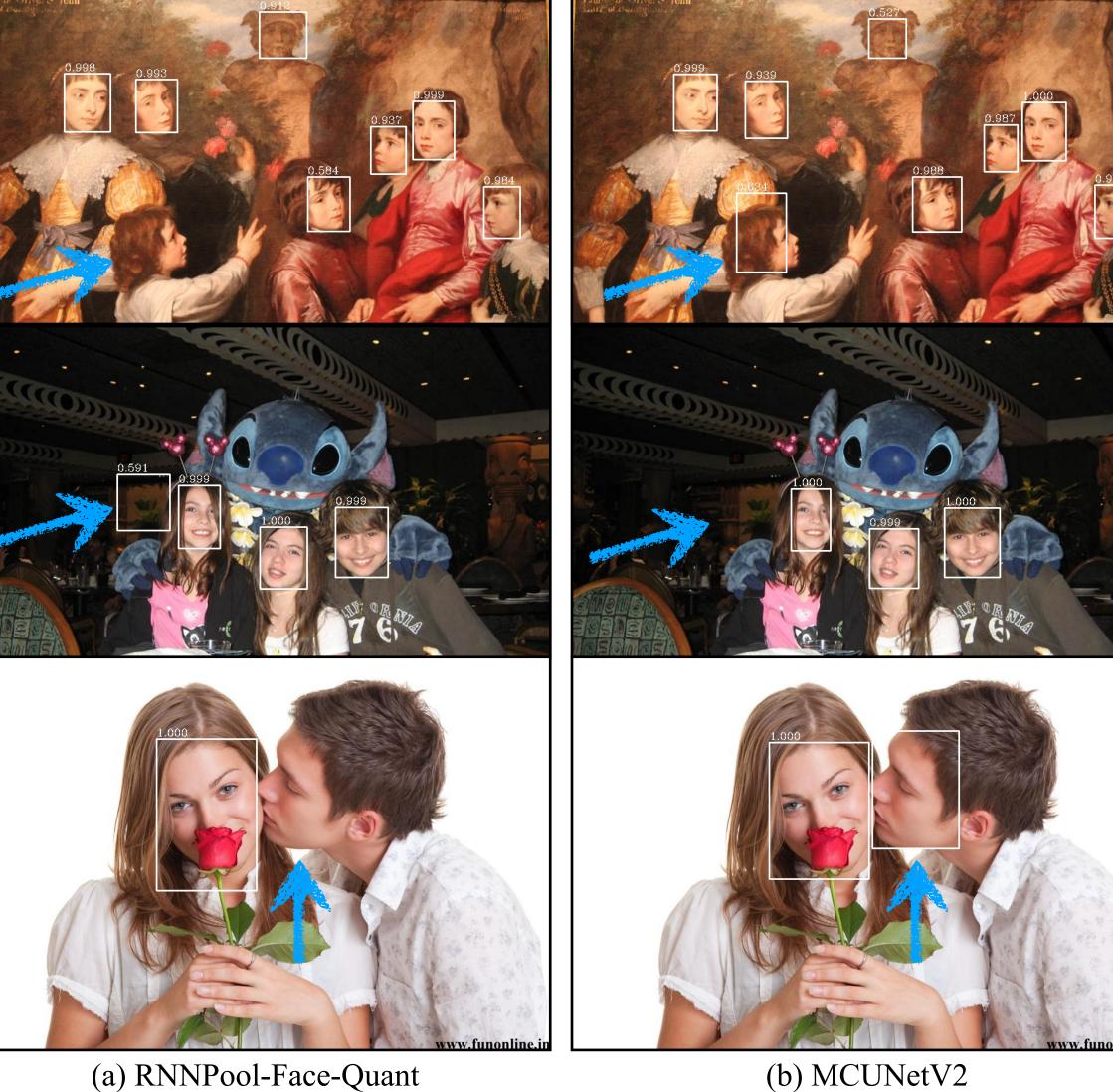
• Patch-based inference allows for a larger resolution, improving detection performance

- Object detection is more sensitive to input resolution

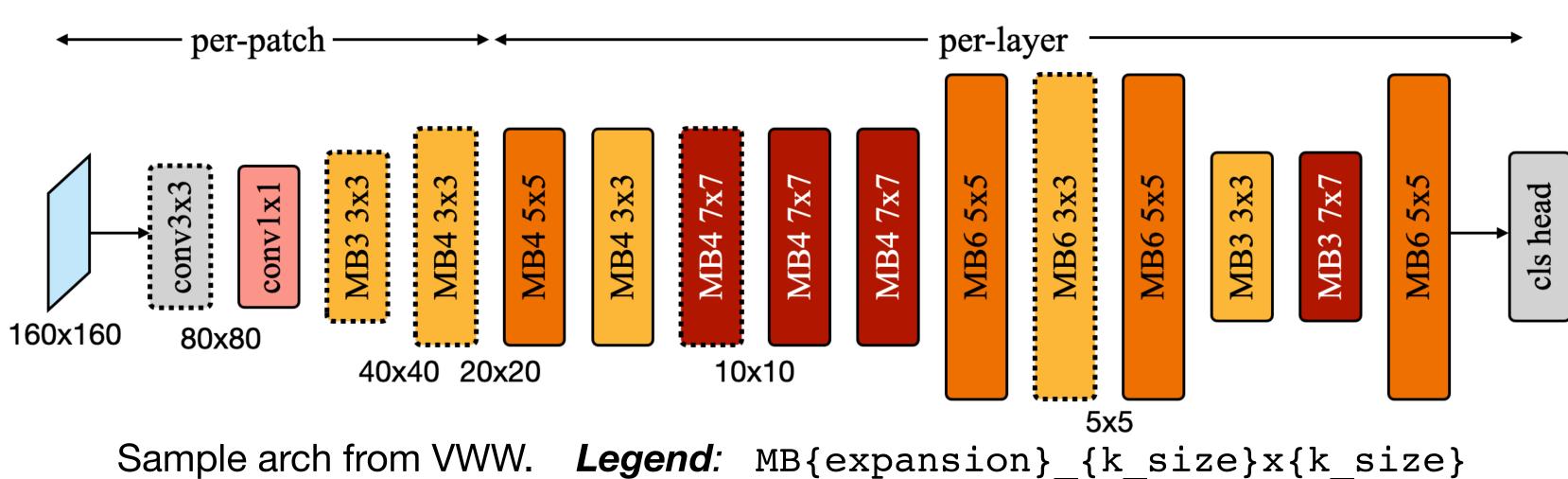


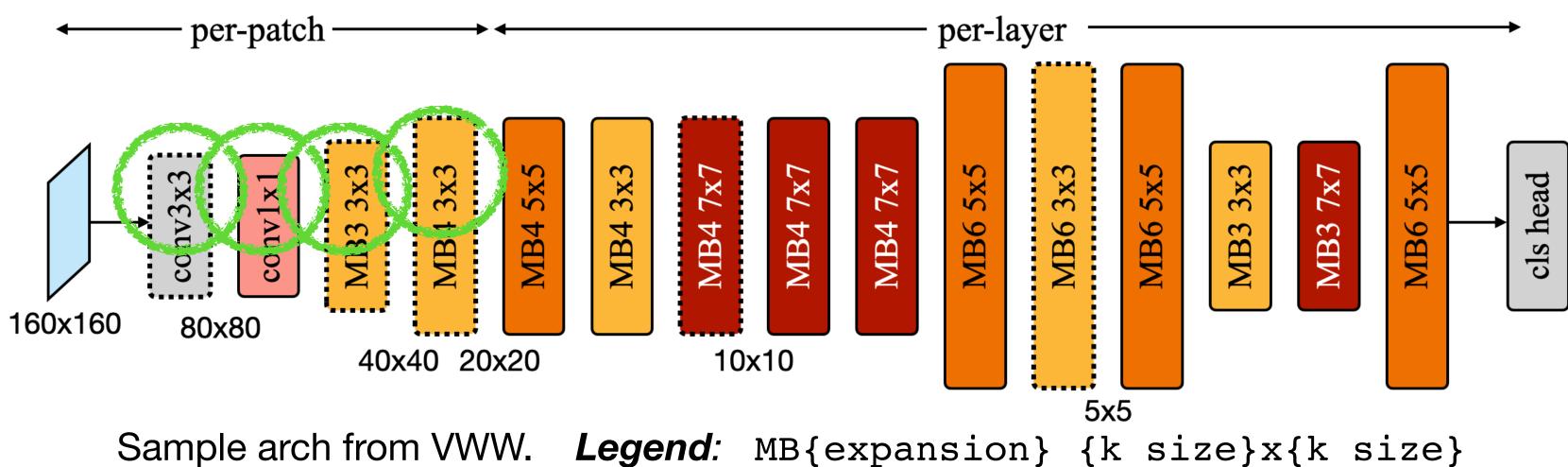
• Patch-based inference allows for a larger resolution, improving detection performance

- Face detection on WIDER Face
- More robust results at a smaller peak memory

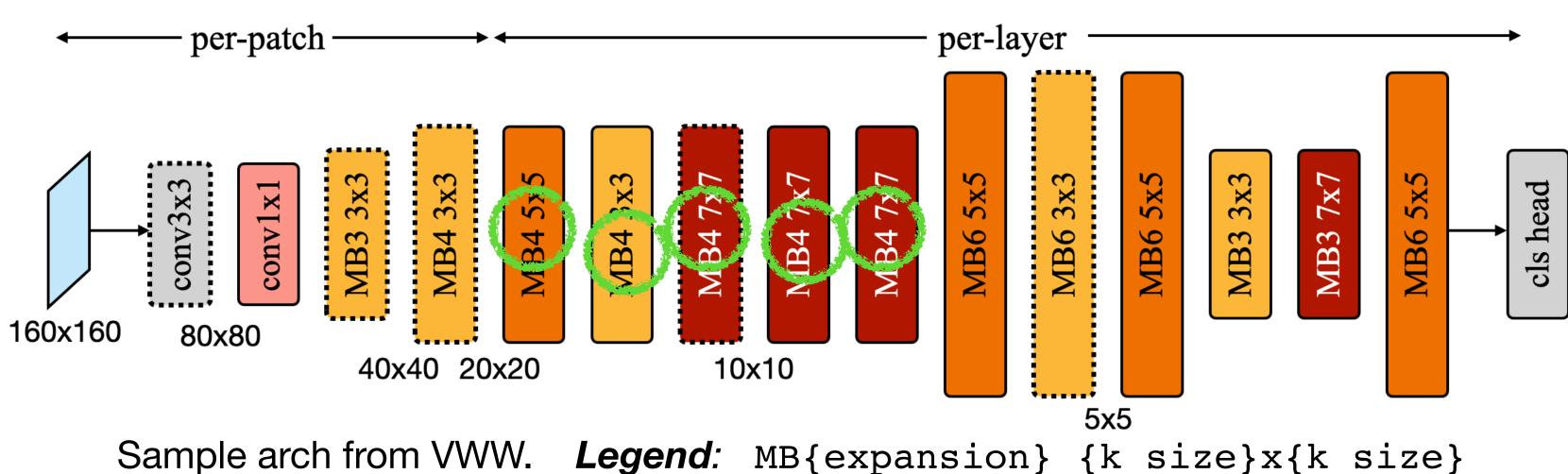


(a) RNNPool-Face-Quant



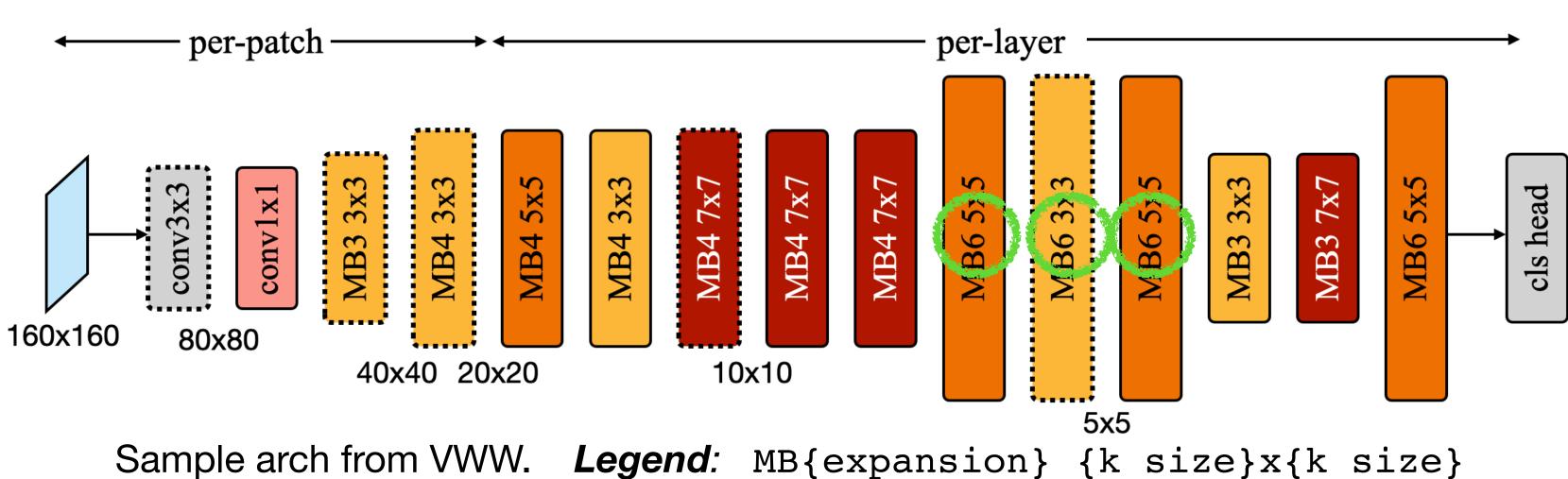


• Kernel size in per-patch stage is small to reduce spatial overlapping



- Expansion ratio in middle stage is small to reduce peak memory

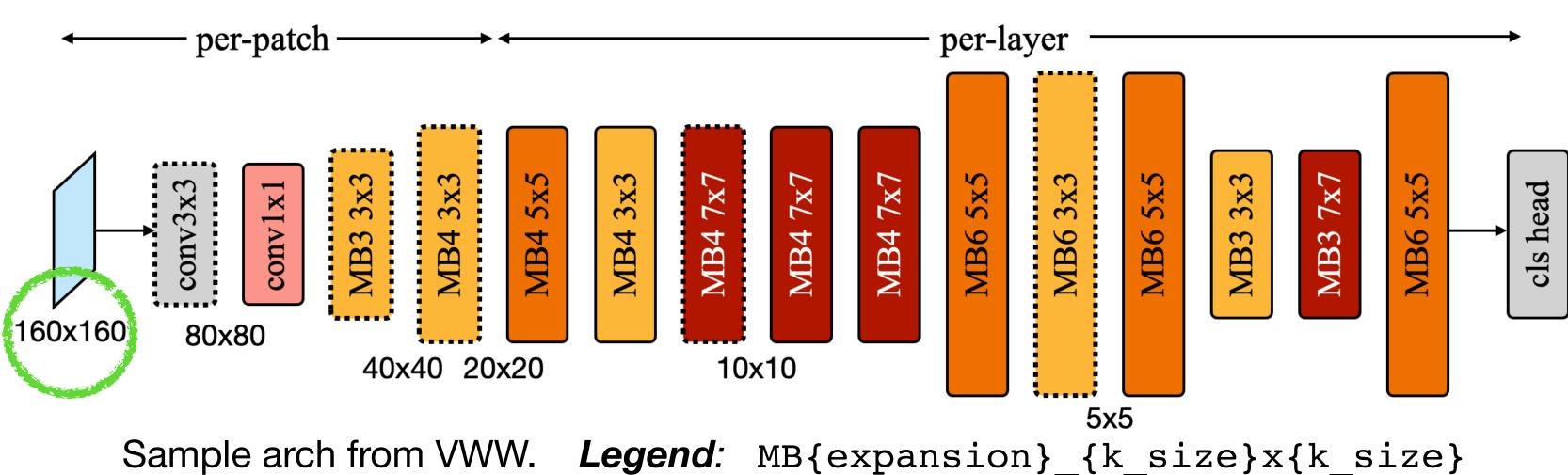
• Kernel size in per-patch stage is small to reduce spatial overlapping



- Expansion ratio in middle stage is small to reduce peak memory; large in later stage to boost performance.

Plii

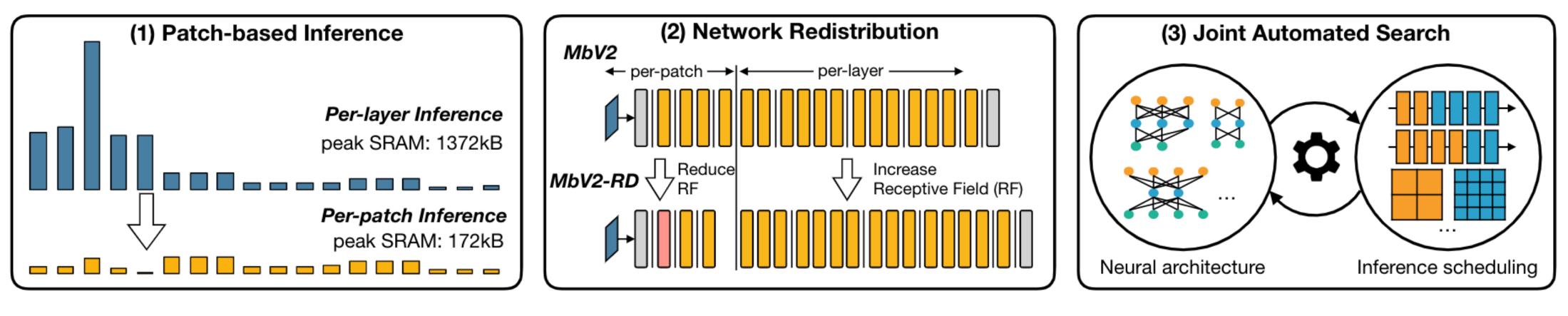
• Kernel size in per-patch stage is small to reduce spatial overlapping



- Kernel size in per-patch stage is small to reduce spatial overlapping
- Expansion ratio in middle stage is small to reduce peak memory; large in later stage to boost performance.
- Larger input resolution for resolution-sensitive datasets like VWW (MCUNet: 128x128)

Plii

Thanks for listening!



MCUNetV2

