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- The future belongs to Tiny AI. 

- Billions of IoT devices around the world based on microcontrollers

- Low-cost: low-income people can have access. Democratize AI.

- Low-power: reduce carbon. Green AI.
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- Tiny model design is fundamentally different from mobile AI, due to limited memory.

But Tiny AI is Difficult
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- Tiny model design is fundamentally different from mobile AI, due to limited memory.

- Existing work optimize for #parameters/#FLOPs, but #activation is the real bottleneck. 

- CANNOT directly scale.
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- Problems:

- Insufficient/imbalanced memory utilization across blocks

- Poor performance on applications beyond classification (e.g., detection)
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In memory
1. Per-layer inference


Peak Mem = 2 WHC 

2. Per-patch inference


Peak Mem = 2 whC << 2WHC 

h
w

* can use more than 2x2 patches
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• a practical 2-layer example

per-layer inference per-patch inference

*need to hold entire output

(much smaller than previous layers)
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Problem: Computation Overhead from Overlapping

conv 3x3

s=2 

conv 3x3

s=1 

• Using 2x2 patches

Spatial overlapping gets larger as receptive field grows!
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redistribute Same performance on:

• Image classification

• Object detection

• ….


Negligible overhead



3. Joint Automated Search for Optimization

…

Neural architecture 
#layers


#channels

kernel size


…


Inference scheduling 
#patches


#layers for patch-based

other knobs from TinyEngine*


…

…

* Lin et al., MCUNet: Tiny Deep Learning on IoT Devices


MCUNetV2
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MCUNetV2 for Tiny Image Classification

• Large-scale ImageNet classification

• Models are quantized to int8

• Serving using TinyEngine.
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MCUNetV2 for Tiny Object Detection

• Object detection is more sensitive to input resolution 
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• Object detection is more sensitive to input resolution
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MCUNetV2 for Tiny Object Detection
• Face detection on WIDER Face 

• More robust results at a smaller 

peak memory

(a) RNNPool-Face-Quant (b) MCUNetV2
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Dissecting MCUNetV2 Architecture

Sample arch from VWW.    Legend:   MB{expansion}_{k_size}x{k_size}

• Kernel size in per-patch stage is small to reduce spatial overlapping

• Expansion ratio in middle stage is small to reduce peak memory; 

large in later stage to boost performance.

• Larger input resolution for resolution-sensitive datasets like VWW 

(MCUNet: 128x128)



MCUNetV2

Thanks for listening!


