
1 Massachusetts Institute of Technology

2 MIT-IBM Watson AI Lab

Ji Lin1, Wei-Ming Chen1, Han Cai1, Chuang Gan2, Song Han1

MCUNetV2: Memory-Efficient Patch-based
Inference for Tiny Deep Learning

Deep Learning Going “Tiny”

Deep Learning Going “Tiny”

Cloud AI Mobile AI

Data centers
Expensive

Privacy issue

Smartphones
Accessible

Process locally

Deep Learning Going “Tiny”

Cloud AI Mobile AI

?
Data centers
Expensive

Privacy issue

Smartphones
Accessible

Process locally

Can we go even smaller?

- The future belongs to Tiny AI.

Can we go even smaller?

- The future belongs to Tiny AI.

- Billions of IoT devices around the world based on microcontrollers

Can we go even smaller?

Personalized Healthcare

…

Smart Manufacturing Driving AssistSmart Home

tinyml.mit.edu

http://connected

…

- The future belongs to Tiny AI.

- Billions of IoT devices around the world based on microcontrollers

- Low-cost: low-income people can have access. Democratize AI.

tinyml.mit.edu

Can we go even smaller?

Personalized HealthcareSmart Manufacturing Driving AssistSmart Home

http://connected

…

- The future belongs to Tiny AI.

- Billions of IoT devices around the world based on microcontrollers

- Low-cost: low-income people can have access. Democratize AI.

- Low-power: reduce carbon. Green AI.

tinyml.mit.edu

Can we go even smaller?

Personalized HealthcareSmart Manufacturing Driving AssistSmart Home

http://connected

- Tiny model design is fundamentally different from mobile AI, due to limited memory.

But Tiny AI is Difficult

Cloud AI Mobile AI Tiny AI

Memory 32GB 4GB 256kB

16,000x
smaller100,000x

smaller

- Tiny model design is fundamentally different from mobile AI, due to limited memory.

tinyml.mit.edu

But Tiny AI is Difficult

http://connected

Cloud AI Mobile AI Tiny AI

Memory 32GB 4GB 256kB

16,000x
smaller100,000x

smaller

- Tiny model design is fundamentally different from mobile AI, due to limited memory.

- Existing work optimize for #parameters/#FLOPs, but #activation is the real bottleneck.

- CANNOT directly scale.

tinyml.mit.edu

But Tiny AI is Difficult

http://connected

Breaking the Memory Bottleneck of TinyML

TinyEngineTinyNAS

MCUNet

Toy applications Real-life applications

* Lin et al., MCUNet: Tiny Deep Learning on IoT Devices

Breaking the Memory Bottleneck of TinyML

TinyEngineTinyNAS

MCUNet

Toy applications Real-life applications

* Lin et al., MCUNet: Tiny Deep Learning on IoT Devices

- Problems:

- Insufficient/imbalanced memory utilization across blocks

- Poor performance on applications beyond classification (e.g., detection)

Imbalanced Memory Distribution of CNNs

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17
Block Index

M
em

or
y

U
sa

ge
 (k

B)

• Per-block memory usage of MobileNetV2

Imbalanced Memory Distribution of CNNs

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17
Block Index

M
em

or
y

U
sa

ge
 (k

B)

256kB constraint of MCU

Peak Mem

1372kB

• Per-block memory usage of MobileNetV2

Imbalanced Memory Distribution of CNNs

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17
Block Index

M
em

or
y

U
sa

ge
 (k

B) Peak Mem

1372kB

• Per-block memory usage of MobileNetV2

High
mem.

Low
mem.

256kB constraint of MCU

CANNOT fit CAN fit

Imbalanced Memory Distribution of CNNs

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17
Block Index

M
em

or
y

U
sa

ge
 (k

B) Peak Mem

1372kB

• Per-block memory usage of MobileNetV2

High
mem.

Low
mem.

256kB constraint of MCU

8×

larger

Imbalanced Memory Distribution of CNNs

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21

M
em

or
y

U
sa

ge
 (k

B)

6.1×

smaller

FBNet

0

160

320

480

640

800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M
em

or
y

U
sa

ge
 (k

B) 3.7×

smaller

MnasNet

• Common case in efficient CNN design

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17

Imbalanced Memory Distribution of CNNs

Block Index

M
em

or
y

U
sa

ge
 (k

B)

Reduce memory usage of the initial stage

-> Reduce the overall memory usage

High
mem.

Low
mem.

256kB constraint of MCU

1. Saving Memory with Patch-based Inference

H

W
C

X Y

* W =

1. Saving Memory with Patch-based Inference

In memory

SRAM

H

W
C

X Y

* W =

* weights are usually partially fetched from Flash

1. Saving Memory with Patch-based Inference

In memory

H

W
C

X Y

* W =

1. Per-layer inference

Peak Mem = 2 WHC

1. Saving Memory with Patch-based Inference

In memory
1. Per-layer inference

Peak Mem = 2 WHC

2. Per-patch inference

Peak Mem = 2 whC << 2WHC

h
w

* can use more than 2x2 patches

1. Saving Memory with Patch-based Inference

In memory

conv1

s=1

conv2

s=2

conv1

s=1

conv2

s=2

• a practical 2-layer example

per-layer inference

1. Saving Memory with Patch-based Inference

In memory

conv1

s=1

conv2

s=2

conv1

s=1

conv2

s=2

• a practical 2-layer example

per-layer inference per-patch inference

*need to hold entire output

(much smaller than previous layers)

1. Saving Memory with Patch-based Inference

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17
Block Index

M
em

or
y

U
sa

ge
 (k

B) Peak Mem

1372kB

High
mem.

Low
mem.

256kB constraint of MCU

per-layer inference peak mem: 1372kB

• Applying to MobileNetV2

1. Saving Memory with Patch-based Inference

0

280

560

840

1120

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17
Block Index

M
em

or
y

U
sa

ge
 (k

B) Org peak
mem.

High
mem.

Low
mem.

256kB constraint of MCU

New peak
mem.

8×

larger

per-patch inference peak mem: 172kBper-layer inference

• Applying to MobileNetV2

Problem: Computation Overhead from Overlapping

conv 3x3

s=2

conv 3x3

s=1

• Using 2x2 patches

Problem: Computation Overhead from Overlapping

conv 3x3

s=2

conv 3x3

s=1

• Using 2x2 patches

Problem: Computation Overhead from Overlapping

conv 3x3

s=2

conv 3x3

s=1

• Using 2x2 patches

Problem: Computation Overhead from Overlapping

conv 3x3

s=2

conv 3x3

s=1

• Using 2x2 patches

Problem: Computation Overhead from Overlapping

conv 3x3

s=2

conv 3x3

s=1

• Using 2x2 patches

Spatial overlapping gets larger as receptive field grows!

Problem: Computation Overhead from Overlapping

M
 M

AC
s

0

80

160

240

320

400

330
301

patch-based inference

 +10%

MobileNetV2

2. Network Redistribution to Reduce Overhead

M
 M

AC
s

0

80

160

240

320

400

330
301

patch-based inference

 +10%

MobileNetV2

2. Network Redistribution to Reduce Overhead

M
 M

AC
s

0

80

160

240

320

400

330
301

patch-based inference

 +10%

MobileNetV2

-> same overall receptive field

2. Network Redistribution to Reduce Overhead

M
 M

AC
s

0

80

160

240

320

400

330
301

patch-based inference

 +10%

MobileNetV2

2. Network Redistribution to Reduce Overhead

M
 M

AC
s

0

80

160

240

320

400

301
330

301

patch-based inference

 +10%

MobileNetV2

redistribute Same performance on:

• Image classification

• Object detection

• ….

Negligible overhead

3. Joint Automated Search for Optimization

…

Neural architecture
#layers

#channels

kernel size

…

Inference scheduling
#patches

#layers for patch-based

other knobs from TinyEngine*

…

…

* Lin et al., MCUNet: Tiny Deep Learning on IoT Devices

MCUNetV2

Reducing the Peak Memory of CNNs

0

64

128

192

256

320

0000 0000

234

310300
315

Per-layer Per-patch (2x2) Per-patch (3x3)

FBNet-A MCUNetMbV2-RDMbV2
w0.5, r144 w0.5, r144 w0.45, r144 w1.0, r144

Measured Peak SRAM (kB)

• Baseline: TinyEngine, the SOTA system stack for tinyML

• Measured on STM32F746 MCU

Reducing the Peak Memory of CNNs

0

64

128

192

256

320

0000

85

132

94
113

234

310300
315

Per-layer Per-patch (2x2) Per-patch (3x3)

FBNet-A MCUNetMbV2-RDMbV2
w0.5, r144 w0.5, r144 w0.45, r144 w1.0, r144

Measured Peak SRAM (kB)

2.8x
smaller 3.2x

smaller

2.3x
smaller

2.8x
smaller

• Baseline: TinyEngine, the SOTA system stack for tinyML

• Measured on STM32F746 MCU

Reducing the Peak Memory of CNNs

0

64

128

192

256

320

56
76

5164
85

132

94
113

234

310300
315

Per-layer Per-patch (2x2) Per-patch (3x3)

• Baseline: TinyEngine, the SOTA system stack for tinyML

• Measured on STM32F746 MCU

FBNet-A MCUNetMbV2-RDMbV2
w0.5, r144 w0.5, r144 w0.45, r144 w1.0, r144

Measured Peak SRAM (kB)

4.9x
smaller 5.9x

smaller

4.1x
smaller

4.2x
smaller

Reducing the Peak Memory of CNNs

0

64

128

192

256

320

56
76

5164
85

132

94
113

234

310300
315

Per-layer Per-patch (2x2) Per-patch (3x3)

• Baseline: TinyEngine, the SOTA system stack for tinyML

• Measured on STM32F746 MCU

FBNet-A MCUNetMbV2-RDMbV2
w0.5, r144 w0.5, r144 w0.45, r144 w1.0, r144

Measured Peak SRAM (kB)

4.9x
smaller 5.9x

smaller

4.1x
smaller

4.2x
smaller

MCUNetV2 for Tiny Image Classification

• Large-scale ImageNet classification

• Models are quantized to int8

• Serving using TinyEngine.

To
p-

1
Ac

cu
ra

cy
 (%

)

40

46

52

58

64

70

64.9

60.3

56.2

49.0

STM32F412 (256kB SRAM)

MbV2

0.35x

Proxyless

0.3x

MCUNet MCUNetV2

+4.6%

60

63

66

69

72
71.8

68.5

STM32F746 (320kB SRAM)

MCUNet MCUNetV2

+3.3%

MCUNetV2 for Tiny Image Classification

V
W

W
 A

cc
ur

ac
y

(%
)

84

86

88

90

92

94

20 88 156 224 292 360

4.0×smaller

Measured Peak SRAM (kB)

Flash < 1MB

30kB

118kB62kB
256kB
constraint
on MCU

+4.0%

• TinyML application: Visual Wake Words (VWW)
• Higher accuracy, lower SRAM

MCUNetV2 MCUNet
MbV2+TF-Lite Proxyless+TF-Lite

MCUNetV2 for Tiny Image Classification

V
W

W
 A

cc
ur

ac
y

(%
)

84

86

88

90

92

94

20 88 156 224 292 360

4.0×smaller

Measured Peak SRAM (kB)

Flash < 1MB

30kB

118kB62kB
256kB
constraint
on MCU

+4.0%

• TinyML application: Visual Wake Words (VWW)
• Higher accuracy, lower SRAM

MCUNetV2 MCUNet
MbV2+TF-Lite Proxyless+TF-Lite

0

30

60

90

120

30

119

MCUNet MCUNetV2

4x
smaller

Peak SRAM (kB) @ 90%

MCUNetV2 for Tiny Object Detection

• Object detection is more sensitive to input resolution

A
cc

ur
ac

y/
m

A
P

(%
)

60

65

70

75

Image Resolution

160 224 288 352

VOC mAP
ImgNet Top-1

larger
degrade

MCUNetV2 for Tiny Object Detection

• Object detection is more sensitive to input resolution

• Patch-based inference allows for a larger resolution, improving detection performance

MCUNetV2 for Tiny Object Detection

• Object detection is more sensitive to input resolution

• Patch-based inference allows for a larger resolution, improving detection performance

m
AP

 o
n

Pa
sc

al
 V

O
C

 (%
)

20

30

40

50

60

70
68.3

51.4

31.6

MbV2

+CMSIS

MCUNet MCUNetV2

<320kB
+16.9%

MCUNetV2 for Tiny Object Detection
• Face detection on WIDER Face

• More robust results at a smaller

peak memory

(a) RNNPool-Face-Quant (b) MCUNetV2

Dissecting MCUNetV2 Architecture

Sample arch from VWW. Legend: MB{expansion}_{k_size}x{k_size}

Dissecting MCUNetV2 Architecture

• Kernel size in per-patch stage is small to reduce spatial overlapping

Sample arch from VWW. Legend: MB{expansion}_{k_size}x{k_size}

Dissecting MCUNetV2 Architecture

• Kernel size in per-patch stage is small to reduce spatial overlapping

• Expansion ratio in middle stage is small to reduce peak memory

Sample arch from VWW. Legend: MB{expansion}_{k_size}x{k_size}

Dissecting MCUNetV2 Architecture

• Kernel size in per-patch stage is small to reduce spatial overlapping

• Expansion ratio in middle stage is small to reduce peak memory;

large in later stage to boost performance.

Sample arch from VWW. Legend: MB{expansion}_{k_size}x{k_size}

Dissecting MCUNetV2 Architecture

Sample arch from VWW. Legend: MB{expansion}_{k_size}x{k_size}

• Kernel size in per-patch stage is small to reduce spatial overlapping

• Expansion ratio in middle stage is small to reduce peak memory;

large in later stage to boost performance.

• Larger input resolution for resolution-sensitive datasets like VWW

(MCUNet: 128x128)

MCUNetV2

Thanks for listening!

