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• Wide applications
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Cloud AI Mobile AI Tiny AI

Challenge: Memory Too Small to Hold DNN

Memory (Activation)

Storage (Weights)

16GB

~TB/PB

4GB

256GB

320kB

1MB13,000x 
smaller

50,000x 
smaller

We need to reduce the peak activation size 
AND the model size to fit a DNN into MCUs.



Existing efficient network only reduces model size  
but NOT activation size!
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TinyNAS: Two-Stage NAS for Tiny Memory Constraints  

Search space design is crucial for NAS performance

There is no prior expertise on MCU model design

Optimized Search SpaceFull Network Space Model Specialization

Memory/Storage 
Constraints
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Revisit ProxylessNAS search space:

S = kernel size × expansion ratio × depth

Out of memory!
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Extended search space to cover wide range of hardware capacity:
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(i.e., different optimized sub-space)

Extended search space to cover wide range of hardware capacity:

S’ = kernel size × expansion ratio × depth × input resolution R × width multiplier W



Different R and W for different hardware capacity

R=260, W=1.4 * R=224, W=1.0

TinyNAS: (1) Automated search space optimization  

(i.e., different optimized sub-space)

Extended search space to cover wide range of hardware capacity:

S’ = kernel size × expansion ratio × depth × input resolution R × width multiplier W

* Cai et al., Once-for-All: Train One Network and Specialize it for Efficient Deployment, ICLR’20 



Different R and W for different hardware capacity

R=260, W=1.4 R=224, W=1.0 R=?, W=?

F412/F743/H746/…

TinyNAS: (1) Automated search space optimization  

(i.e., different optimized sub-space)

Extended search space to cover wide range of hardware capacity:

S’ = kernel size × expansion ratio × depth × input resolution R × width multiplier W

256kB/320kB/512kB/…



Analyzing FLOPs distribution of satisfying models in each search space:

Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy
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Analyzing FLOPs distribution of satisfying models in each search space:

Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy



TinyNAS: (2) Resource-constrained model specialization  

Random sample 
(kernel size, 

expansion, depth)

Jointly fine-tune 
multiple sub-

networks

Super Network

• Small sub-networks are nested in large sub-networks.

• One-shot NAS through weight sharing

* Cai et al., Once-for-All: Train One Network and Specialize it for Efficient Deployment, ICLR’20 



TinyNAS: (2) Resource-constrained model specialization  

Random sample 
(kernel size, 

expansion, depth)

Jointly fine-tune 
multiple sub-

networks

Super Network

…

Directly evaluate the 
accuracy of sub-nets

• One-shot NAS through weight sharing
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Start with full kernel size 
Smaller kernel takes centered weights



TinyNAS: (2) Resource-constrained model specialization  
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TinyNAS: (2) Resource-constrained model specialization  
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train with full width

channel 
importance
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reorg.

shrink the width
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Shrink the width  
Keep the most important channels when shrinking via channel sorting
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• TinyNAS designs networks with more uniform peak memory for each block, 
allowing us to fit a larger model at the same amount of memory 

Peak Memory for First Two Stages

2.2x 1.6x
maxmax
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TinyEngine: A Memory-Efficient Inference Library 

(b) TinyEngine: Model-adaptive code generation.

NN Model 
Specialized ops

Inference 

Compile time (offline) Runtime 

Memory schedule

Code generation

Peak Mem (KB) ↓
0 7648

Baseline: ARM CMSIS-NN

160

1.7x smaller

1. Reducing overhead with separated compilation & runtime 
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Baseline: ARM CMSIS-NN Code generation: Eliminate runtime interpretation overhead
Million MAC/s ↑

0 6452

(1) Code generator-based compilation -> Eliminate overheads of runtime interpretation 
Analyzing Million MAC/s improved by each technique 

OOM

NN Model
Specialized ops

Inference

 TinyEngine: Model-adaptive code generation.

Compile time Runtime

Memory schedule
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OOM

Baseline: ARM CMSIS-NN Code generation Specialized Im2col: Increase the data reuse
Million MAC/s ↑

0 64 7052

(a) Model-level memory scheduling

(b) Tile size configuration for Im2col 

(2) Model-adaptive memory scheduling -> Increase data reuse for each layer 
Analyzing Million MAC/s improved by each technique 

TinyEngine: Faster Inference Speed



OOM

Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion
Million MAC/s ↑

0 64 7052 75

(3) Computation Kernel Specialization: Operation fusion

• Minimize memory footprint 

• Optimize the overall computation 

Pad

Conv

ReLU

BN

Specialized kernel

 e.g., fuse Pad+Conv+ReLU+BN

Analyzing Million MAC/s improved by each technique 
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OOM

Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion Loop unrolling
Million MAC/s ↑

0 64 7052 75 79 82

(3) Computation Kernel Specialization: Loop unrolling

e.g., fully unroll for 

3x3 conv 

...

• Eliminate the branch instruction overheads of loops

Analyzing Million MAC/s improved by each technique 

TinyEngine: Faster Inference Speed



Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion Loop unrolling Tiling
Million MAC/s ↑

0 64 7052 75 79 82

Specialized loop unrolling/tiling 
according to network architecture 

Analyzing Million MAC/s improved by each technique 
(3) Computation Kernel Specialization: Loop tiling for each layer

Im2col buffer

x

Weights

...

Tile size

Output

Tile size

• Tiling loops based on the kernel size and available memory

TinyEngine: Faster Inference Speed
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Experimental Results

We focus on large-scale datasets to reflect real-life use cases.


Datasets: 
(1) ImageNet-1000

(2) Wake Words


• Visual: Visual Wake Words

• Audio: Google Speech Commands



System-Algorithm Co-design Gives the Best Results

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)
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MobileNetV2+CMSIS-NN

+17%
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Visual Wake Word Detection

• Detecting whether a person is present in the frame




MCUNet: Tiny Deep Learning on IoT Devices

Project Page: http://tinyml.mit.edu

• Our study suggests that the era of tiny machine learning on IoT devices has arrived

Cloud AI Mobile AI Tiny AI

ResNet MobileNet MCUNet


