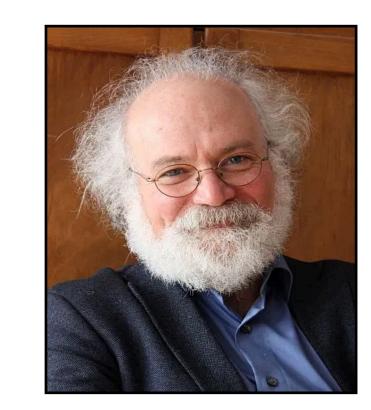
MCUNet: Tiny Deep Learning on IoT Devices

Ji Lin¹

Wei-Ming Chen^{1,2}

Yujun Lin¹

²National Taiwan University ³MIT-IBM Watson AI Lab ^{1}MIT



John Cohn³

Chuang Gan³



Song Han¹

NeurIPS 2020 (spotlight)

Background: The Era of AloT on Microcontrollers (MCUs)

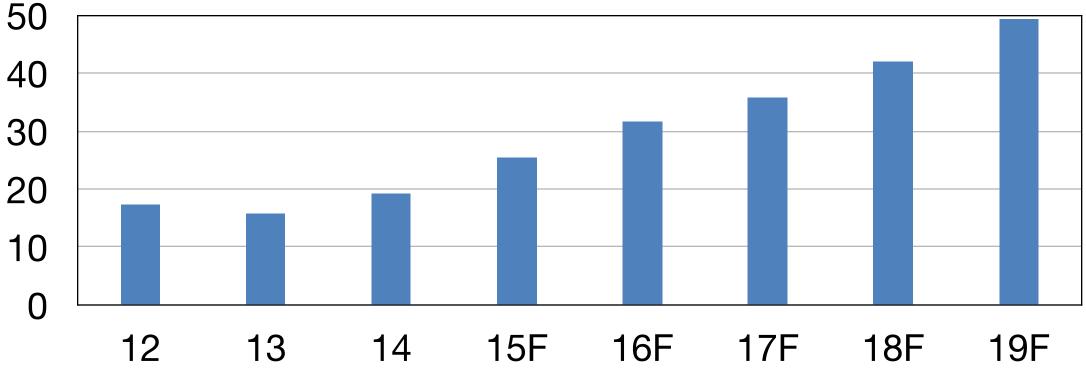
Low-cost, low-power

Background: The Era of AloT on Microcontrollers (MCUs)

Low-cost, low-power

#Units (Billion)

Rapid growth



Background: The Era of AloT on Microcontrollers (MCUs)

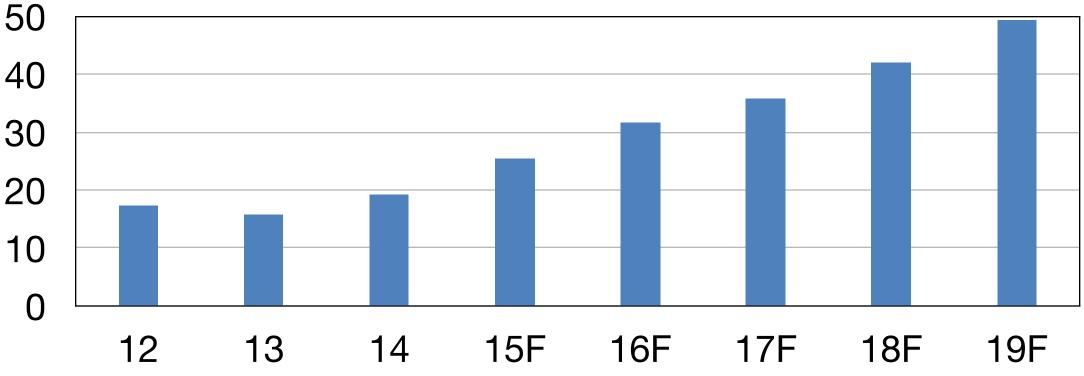
Low-cost, low-power

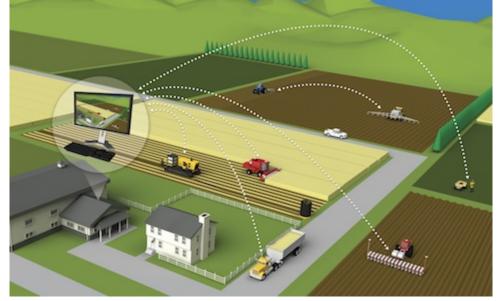
• Wide applications

Smart Retail

Personalized Healthcare **Precision Agriculture**

Rapid growth



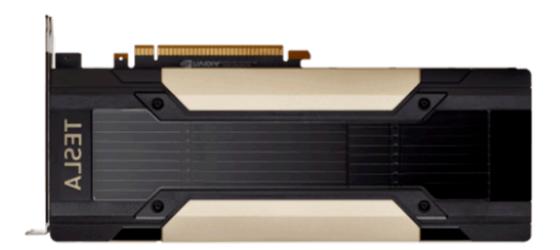


Smart Home

. . .

Memory (Activation)

Storage (Weights)



Cloud Al

Memory (Activation)

Storage (Weights)

16GB

~TB/PB



Cloud Al

Memory (Activation)

Storage (Weights)

16GB

~TB/PB

Mobile Al

4GB

256GB



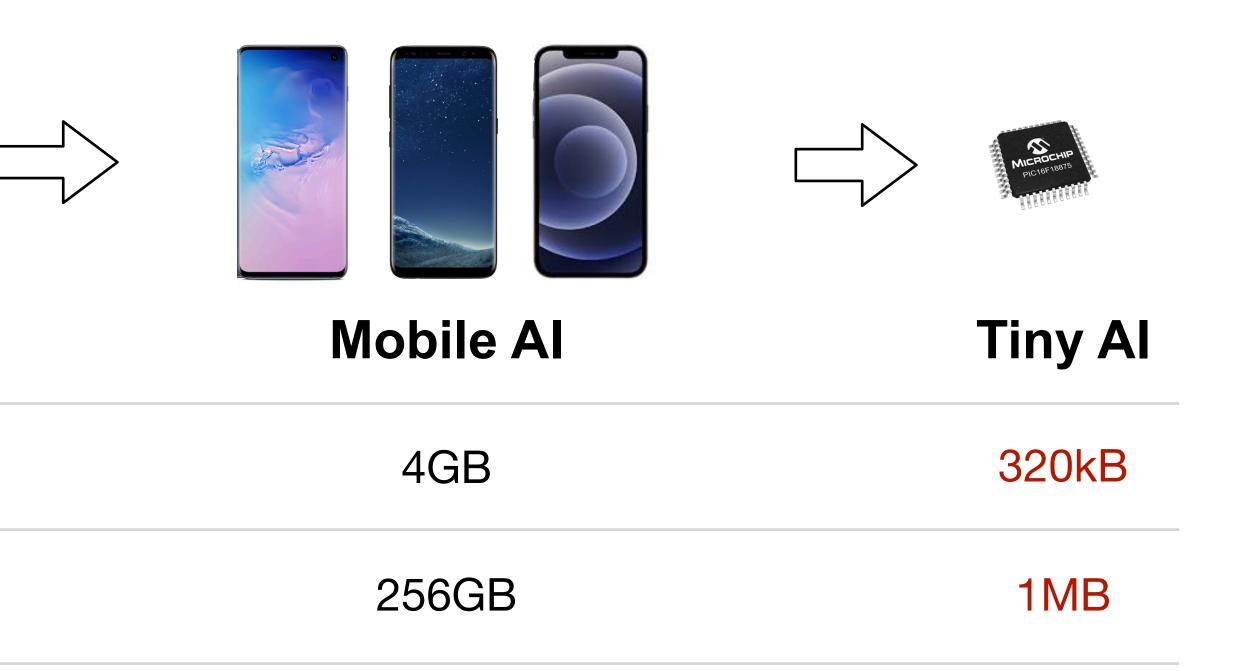
Cloud Al

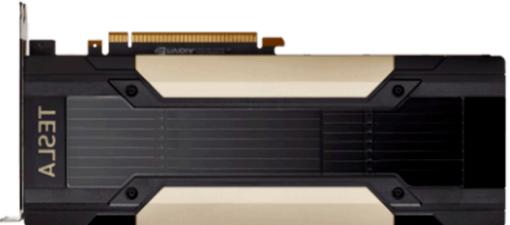
Memory (Activation)

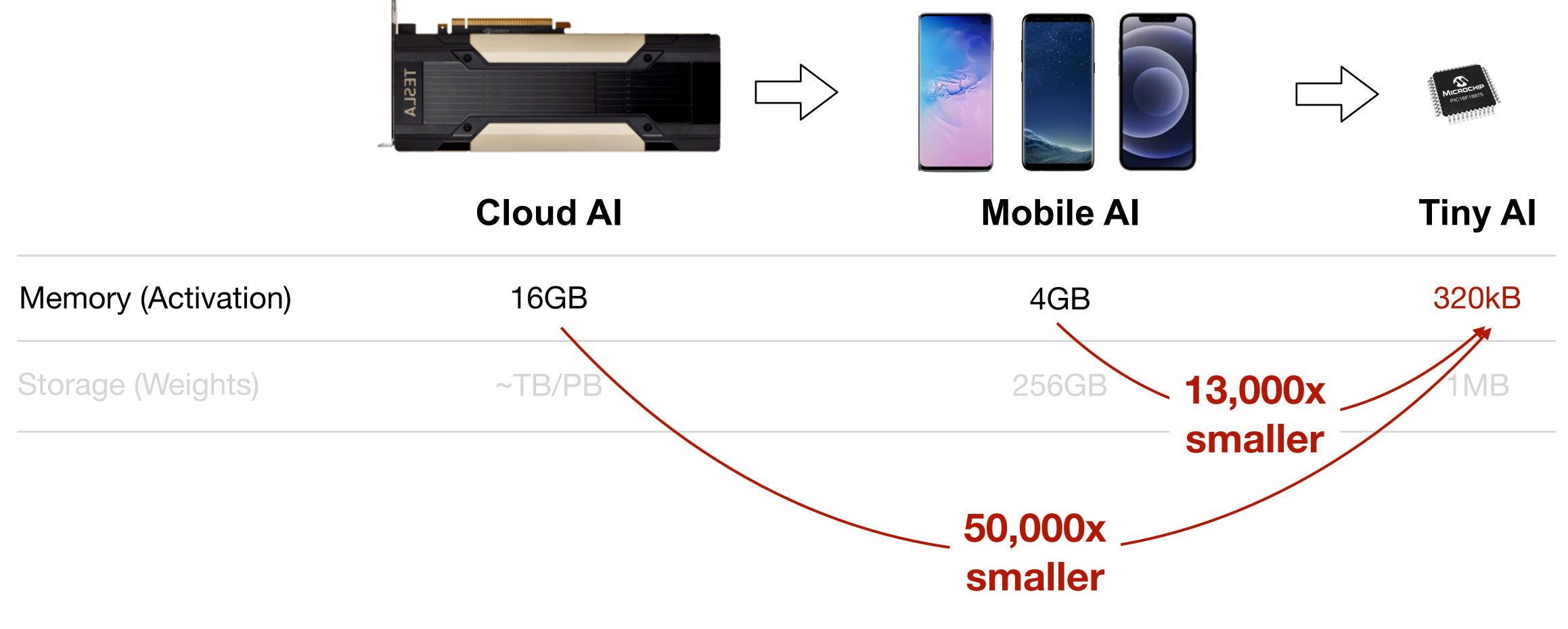
Storage (Weights)

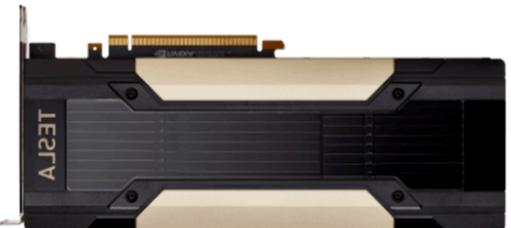
16GB

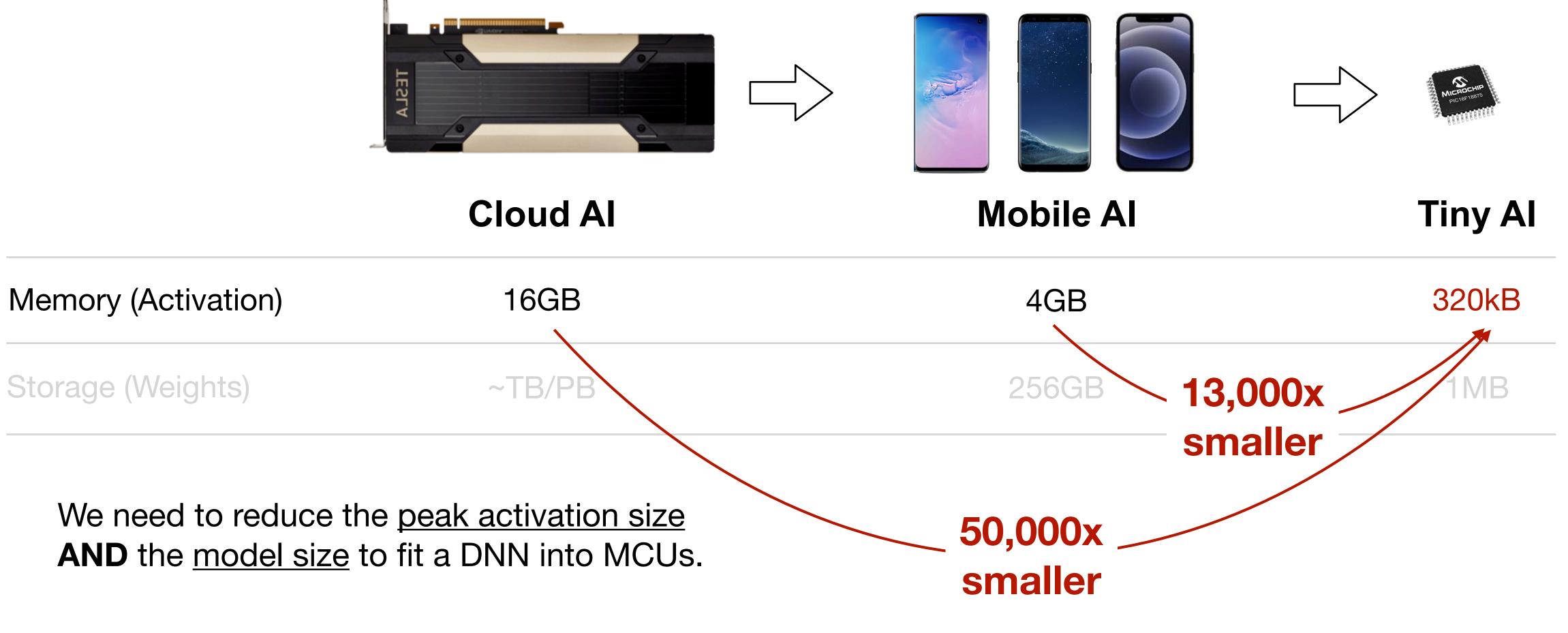
~TB/PB



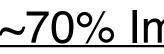


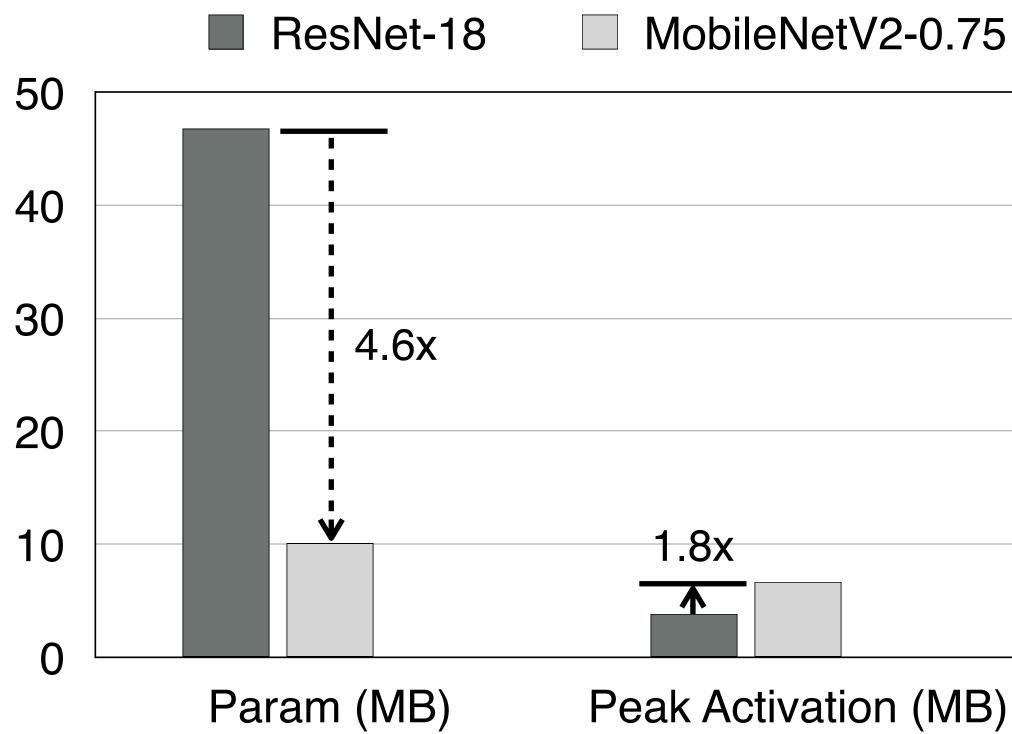






Existing efficient network only reduces model size but NOT activation size!

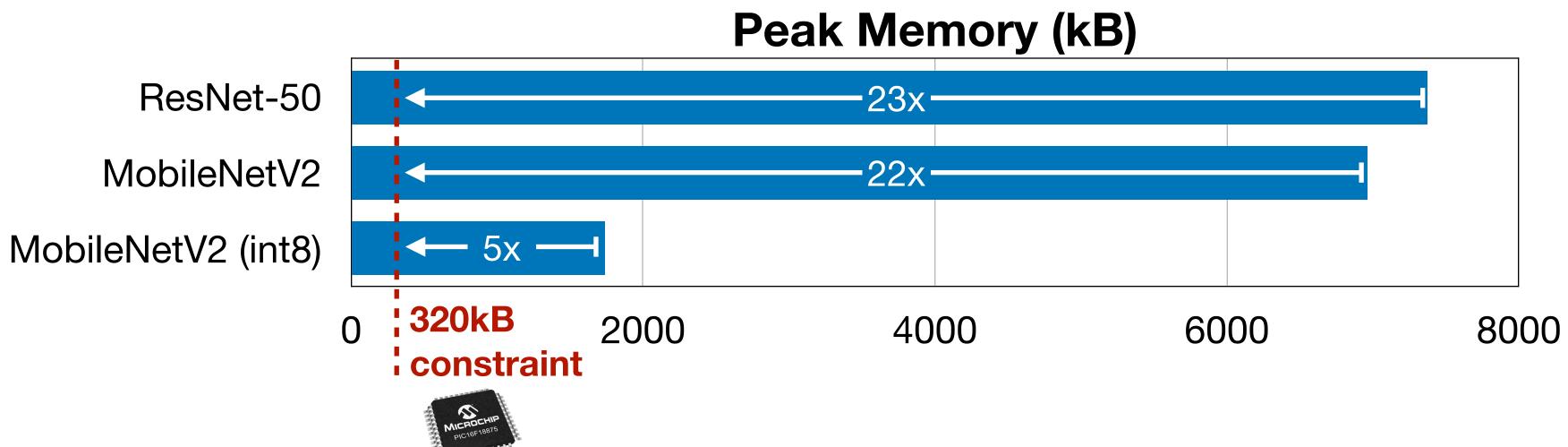


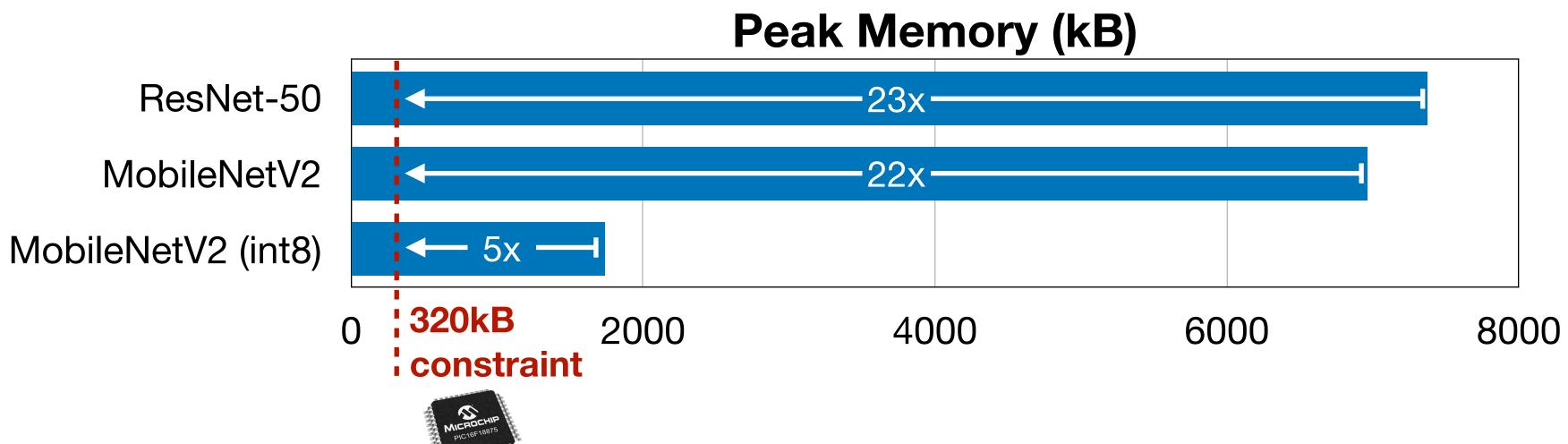


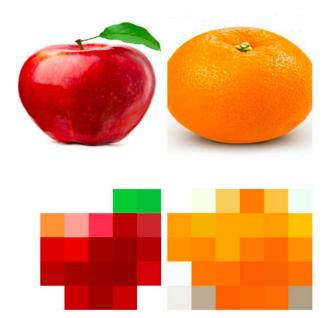
~70% ImageNet Top-1

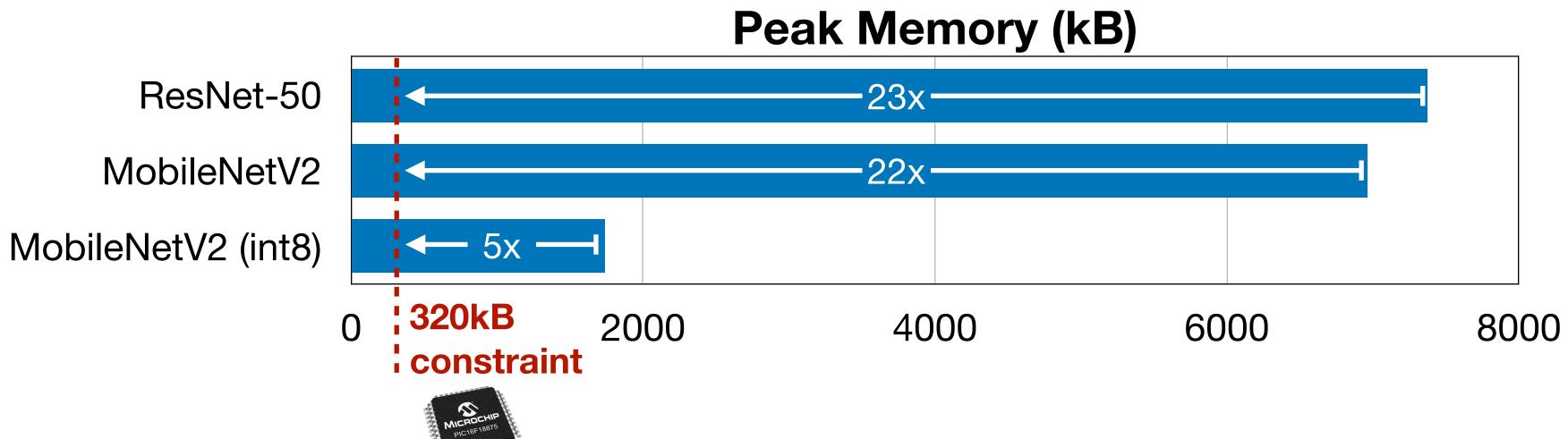
1.8x	

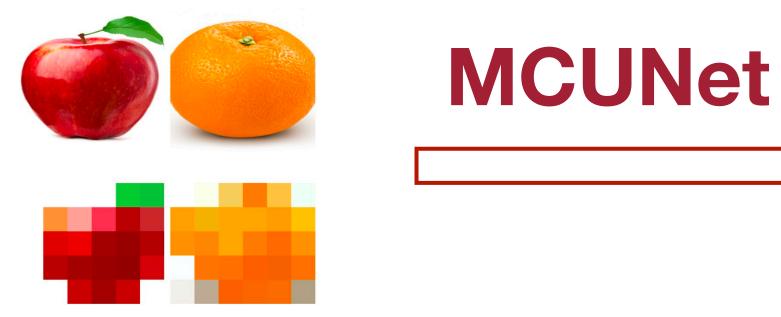
Peak Activation (MB)



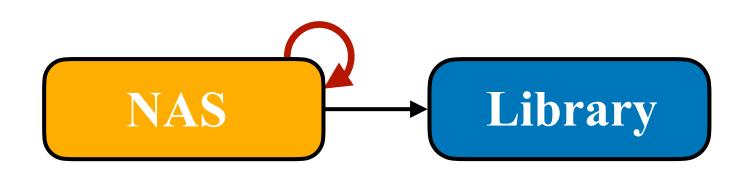




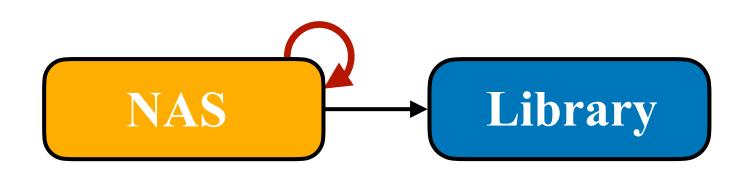




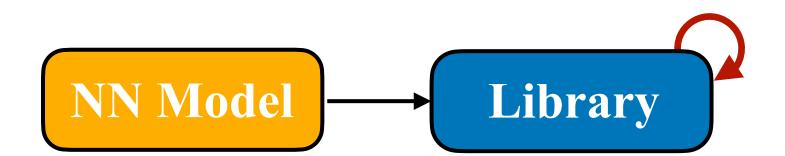
I AN LAS



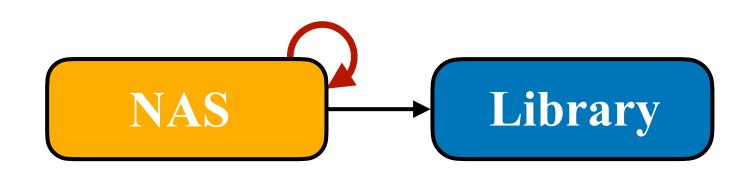
(a) Search NN model on an existing library e.g., ProxylessNAS, MnasNet



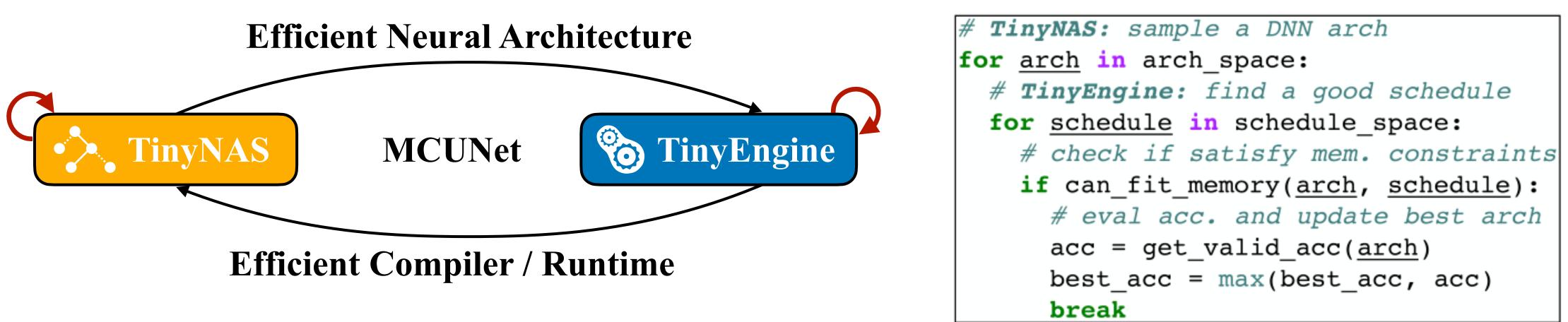
(a) Search NN model on an existing library e.g., ProxylessNAS, MnasNet



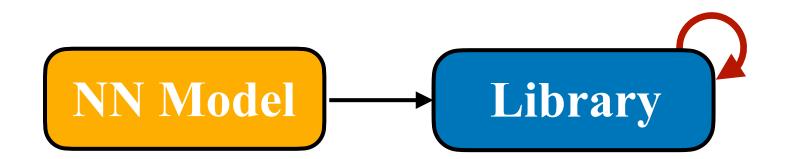
(b) Tune deep learning library given a NN model e.g., TVM



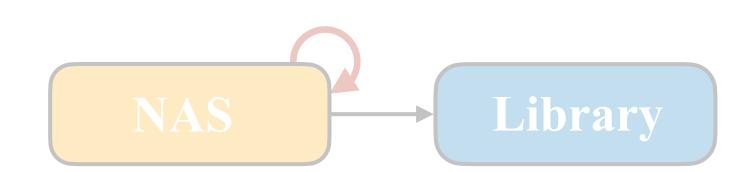
(a) Search NN model on an existing library e.g., *ProxylessNAS, MnasNet*



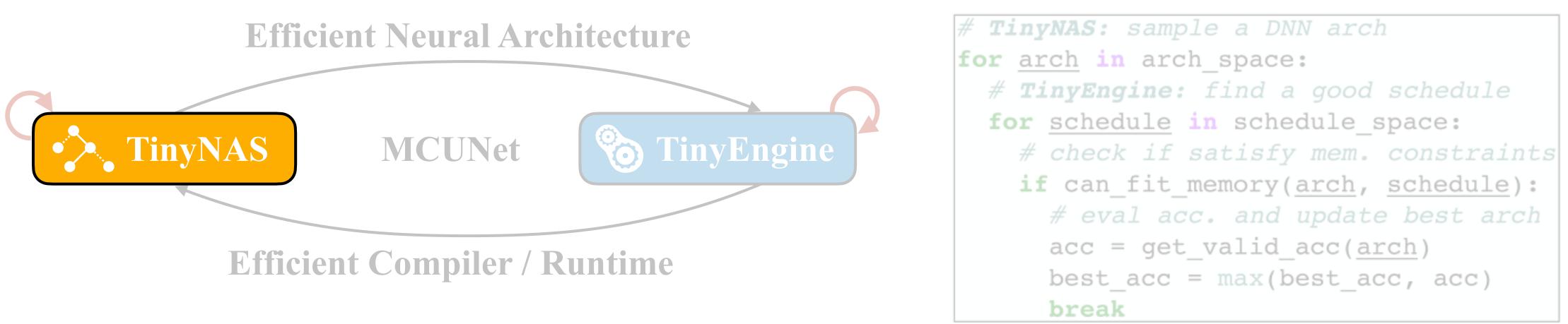
(c) *MCUNet*: system-algorithm co-design



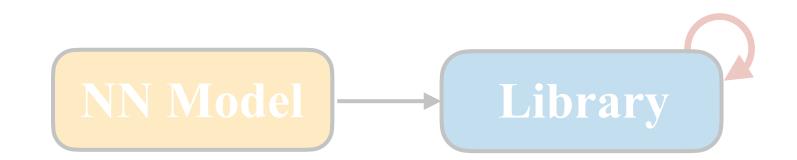
(b) Tune deep learning library given a NN model e.g., *TVM*



(a) Search NN model on an existing library e.g., ProxylessNAS, MnasNet



(c) *MCUNet*: system-algorithm co-design

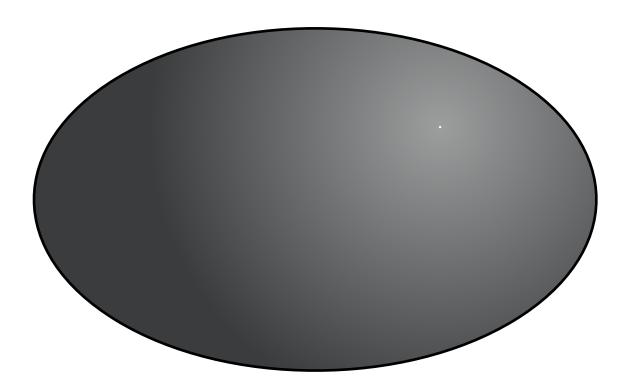


(b) Tune deep learning library given a NN model e.g., TVM

TinyNAS: Two-Stage NAS for Tiny Memory Constraints

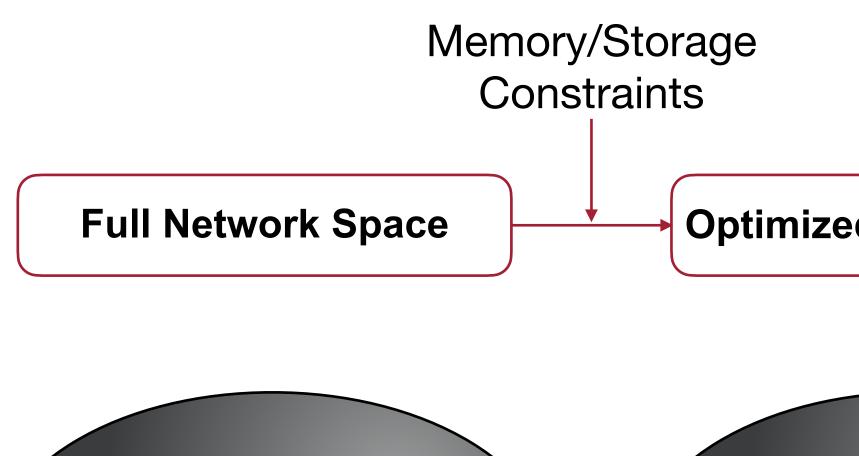
Search space design is crucial for NAS performance There is no prior expertise on MCU model design

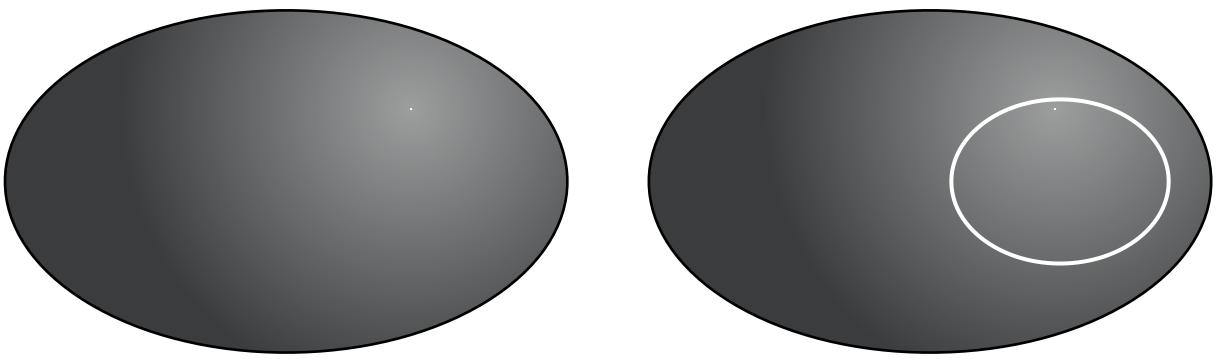
Full Network Space



TinyNAS: Two-Stage NAS for Tiny Memory Constraints

Search space design is crucial for NAS performance There is no prior expertise on MCU model design

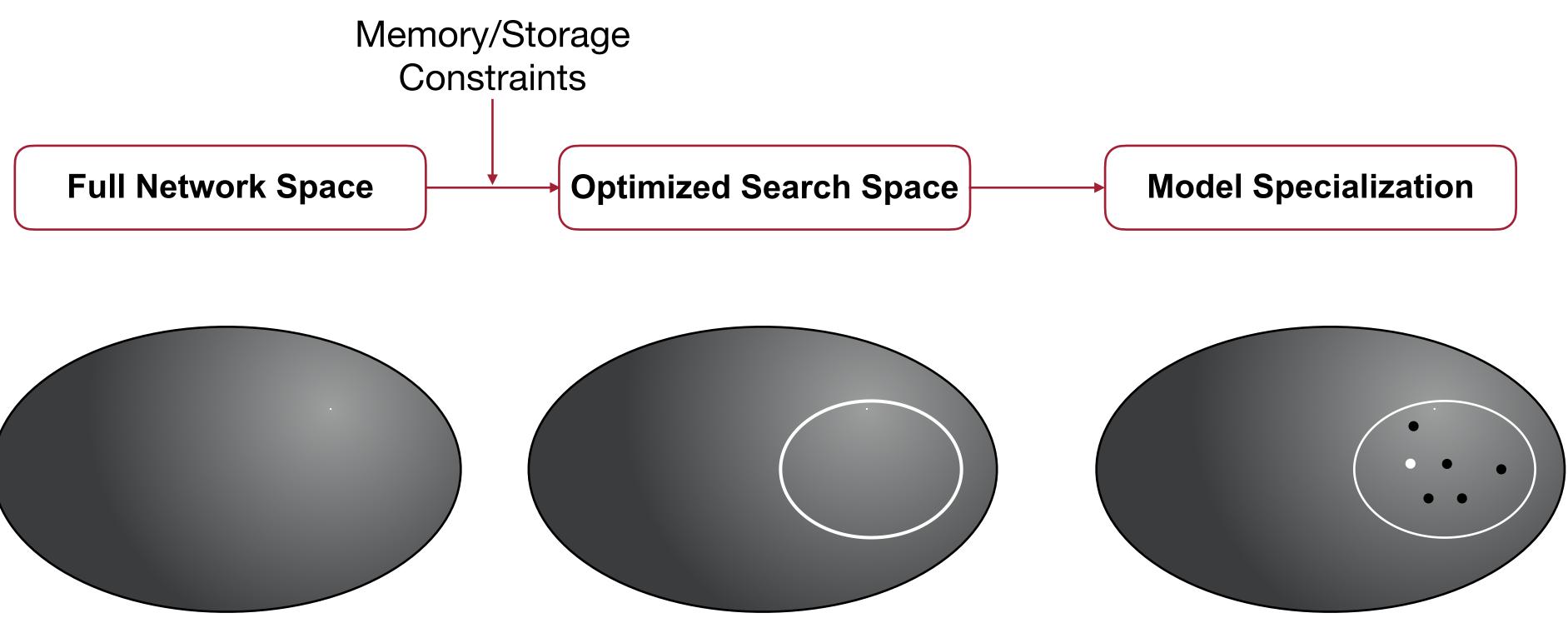


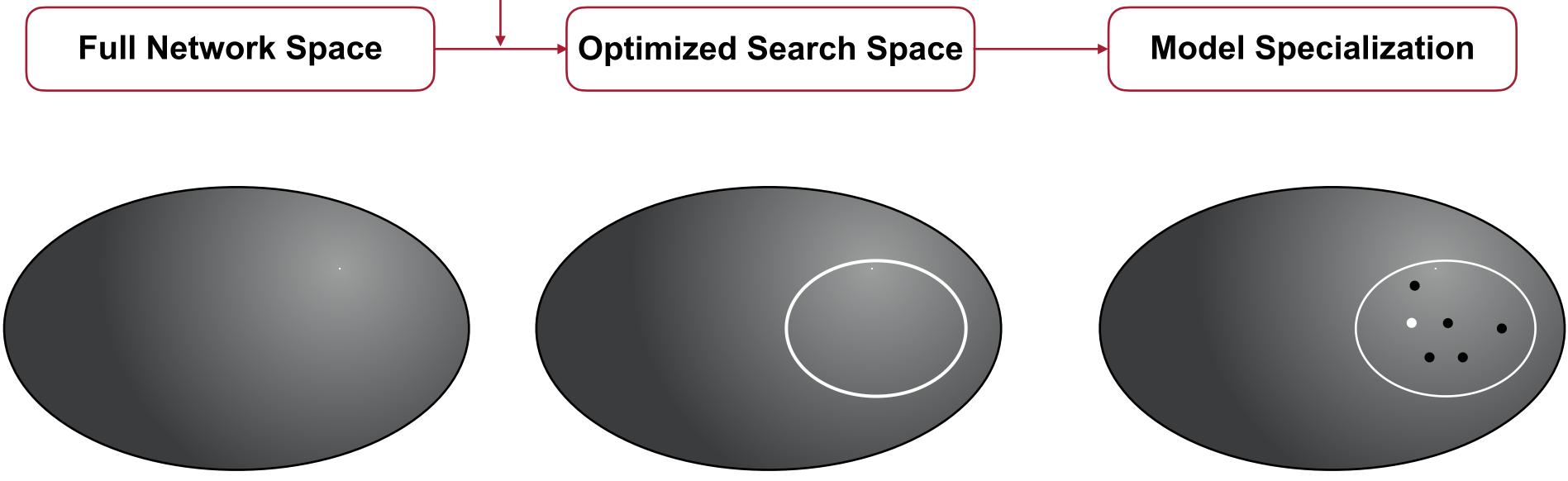


Optimized Search Space

TinyNAS: Two-Stage NAS for Tiny Memory Constraints

Search space design is crucial for NAS performance There is no prior expertise on MCU model design



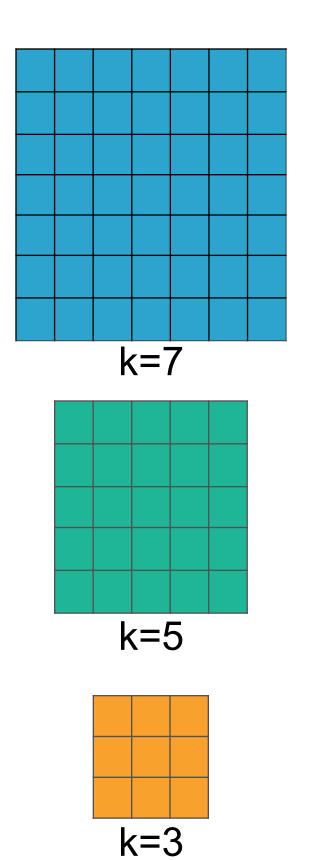


Revisit ProxylessNAS search space: *S* = *kernel size* × *expansion ratio* × *depth*

I-IANI_AI=

Revisit ProxylessNAS search space:

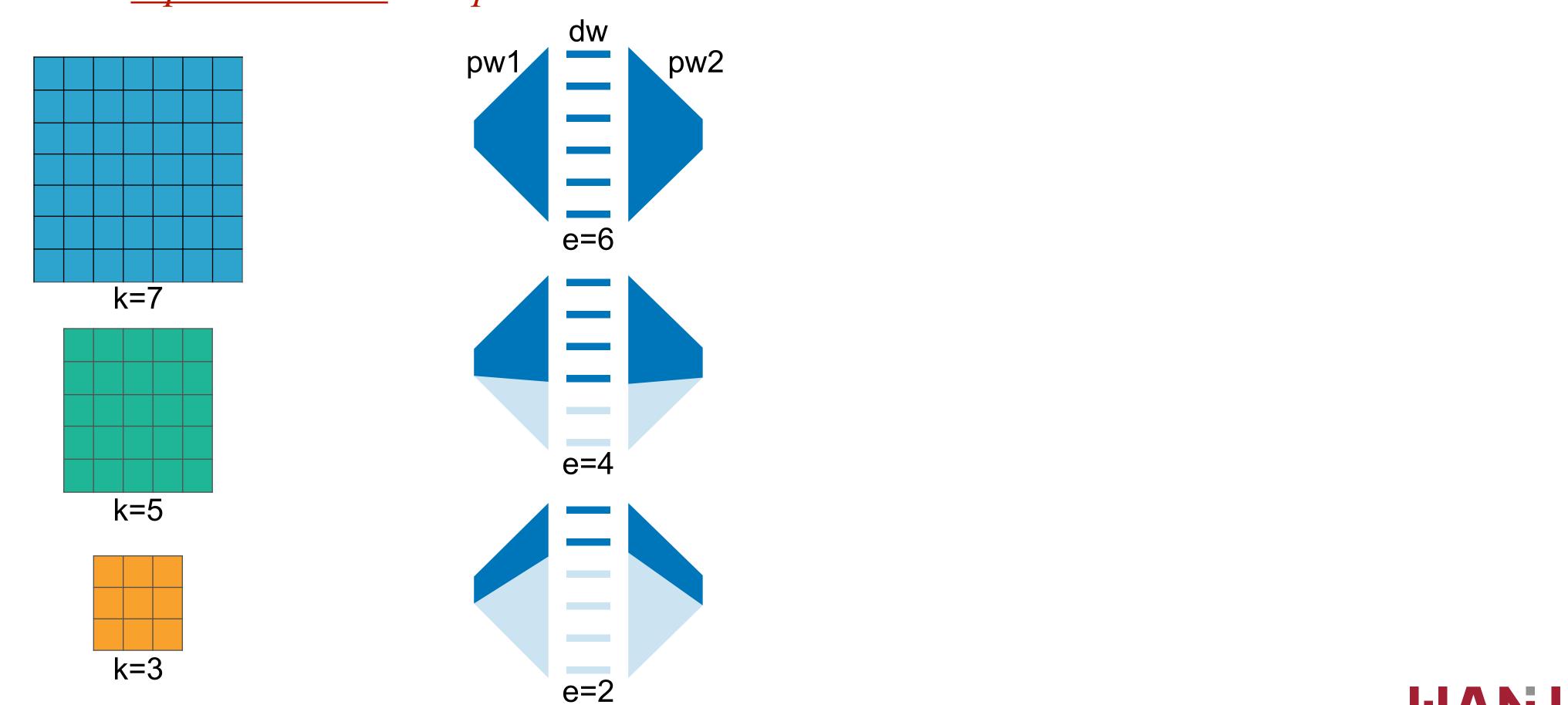
S = <u>kernel size</u> × expansion ratio × depth



I-IANI_AI=

Revisit ProxylessNAS search space:

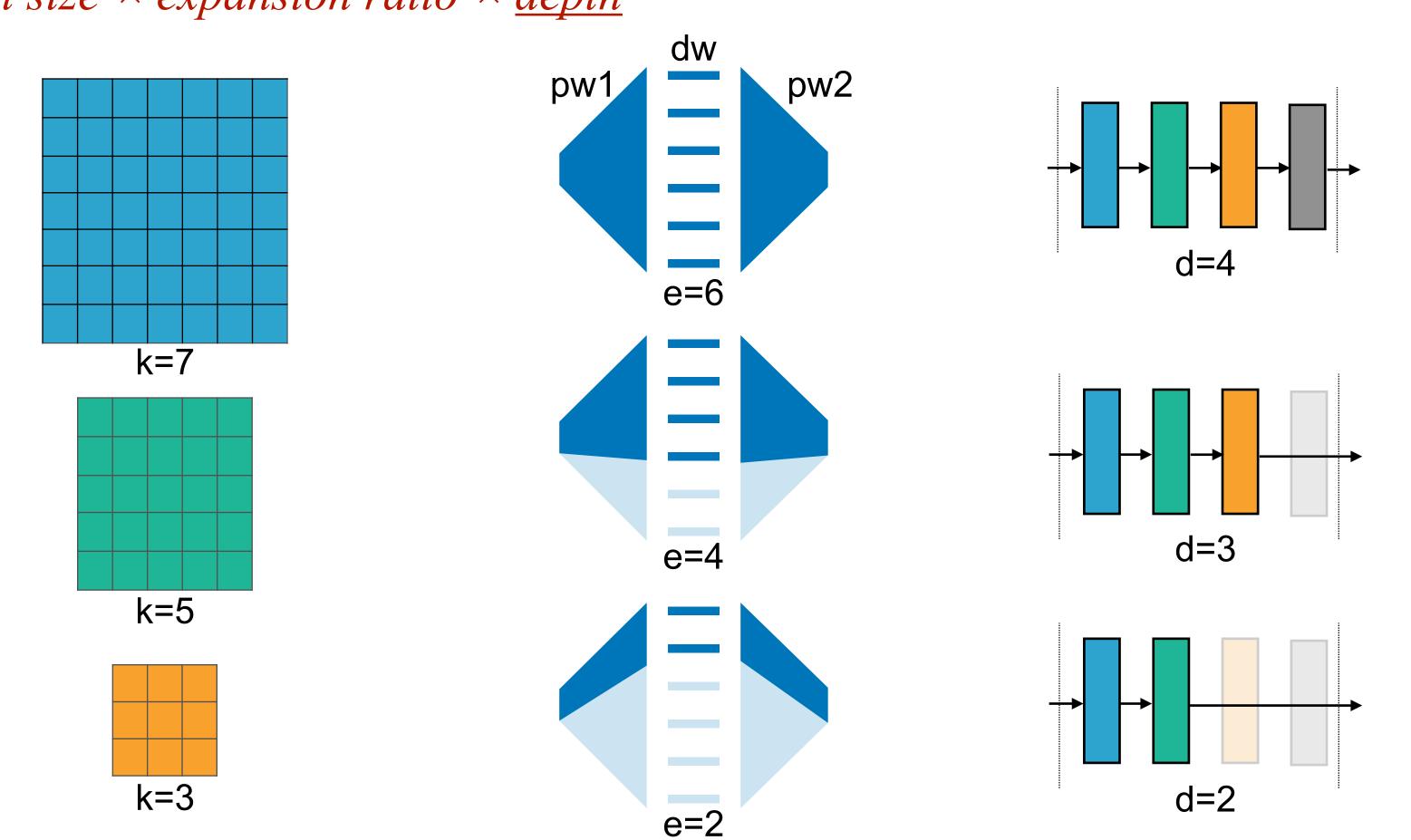
 $S = kernel size \times expansion ratio \times depth$



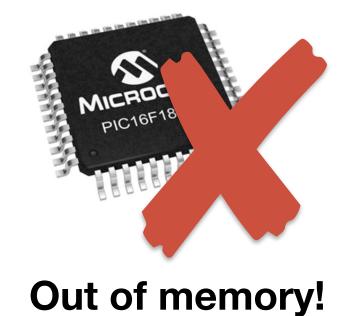
I-IANI_AI=

Revisit ProxylessNAS search space:

 $S = kernel size \times expansion ratio \times <u>depth</u>$



Revisit ProxylessNAS search space: *S* = *kernel size* × *expansion ratio* × *depth*



Extended search space to cover wide range of hardware capacity: $S' = kernel size \times expansion ratio \times depth \times input resolution <u>R</u> \times width multiplier <u>W</u>$

Extended search space to cover wide range of hardware capacity: $S' = kernel size \times expansion ratio \times depth \times input resolution <u>R</u> \times width multiplier <u>W</u>$

Different *R* and *W* for different hardware capacity (i.e., different optimized sub-space)

R=224, *W*=1.0

Extended search space to cover wide range of hardware capacity: $S' = kernel size \times expansion ratio \times depth \times input resolution <u>R</u> \times width multiplier <u>W</u>$

Different *R* and *W* for different hardware capacity (i.e., different optimized sub-space)



* Cai et al., Once-for-All: Train One Network and Specialize it for Efficient Deployment, ICLR'20

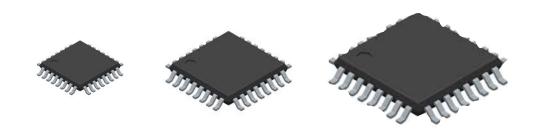
=224, W=1.0

Extended search space to cover wide range of hardware capacity: $S' = kernel size \times expansion ratio \times depth \times input resolution <u>R</u> \times width multiplier <u>W</u>$

Different *R* and *W* for different hardware capacity (i.e., different optimized sub-space)



=224, *W*=1.0

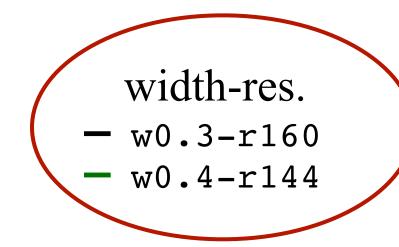


F412/F743/H746/.. 256kB/320kB/512kB/...

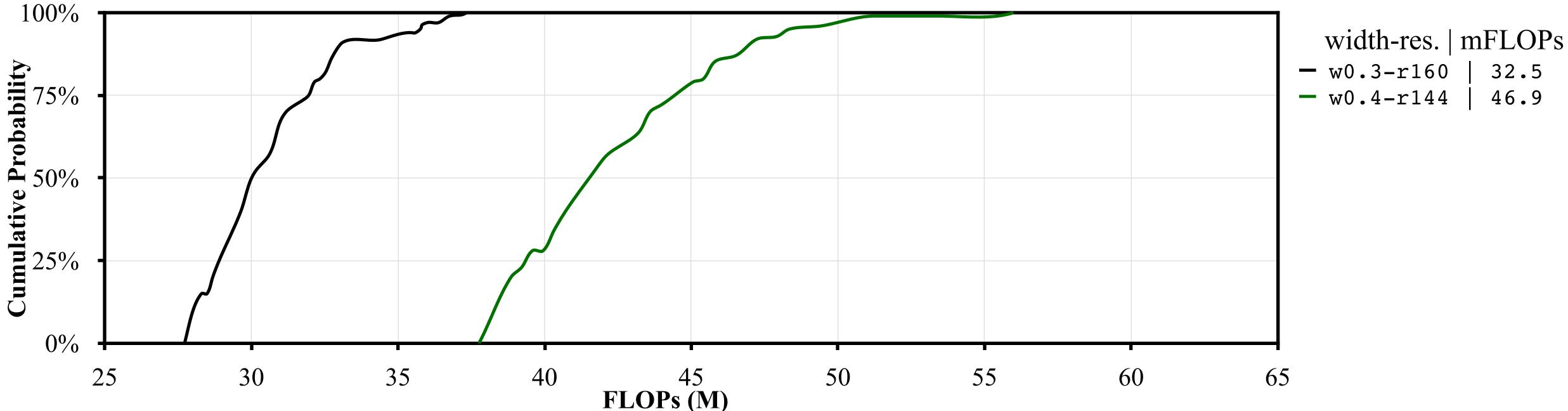
Analyzing **FLOPs distribution** of satisfying models in each search space: Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy

Analyzing **FLOPs distribution** of satisfying models in each search space: Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy

320kB?

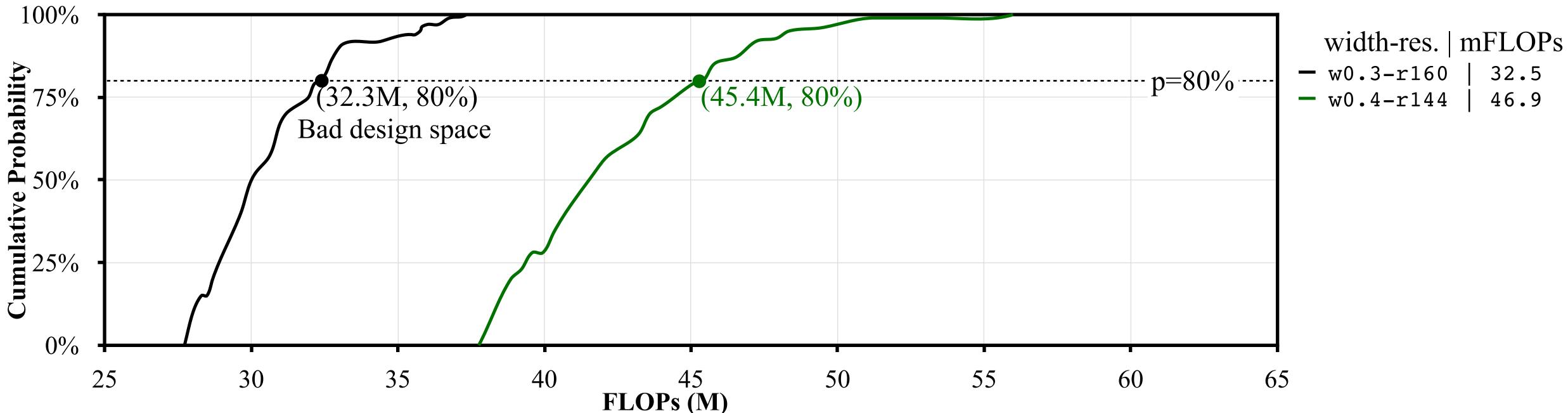


Analyzing **FLOPs distribution** of satisfying models in each search space: Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy



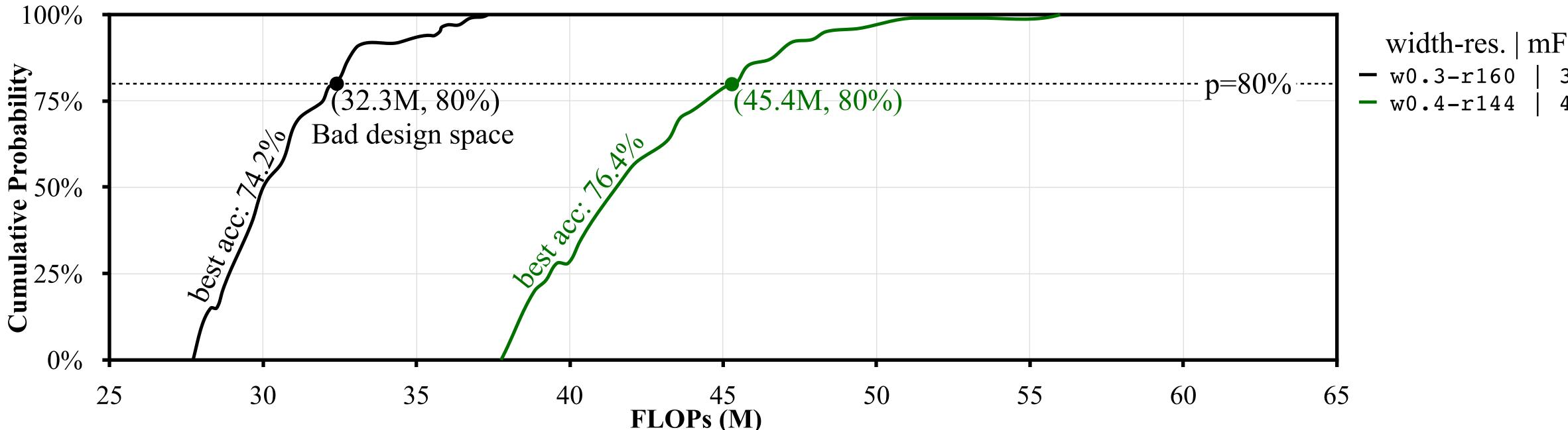
32.5 46.9

Analyzing **FLOPs distribution** of satisfying models in each search space: Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy



32.5 46.9

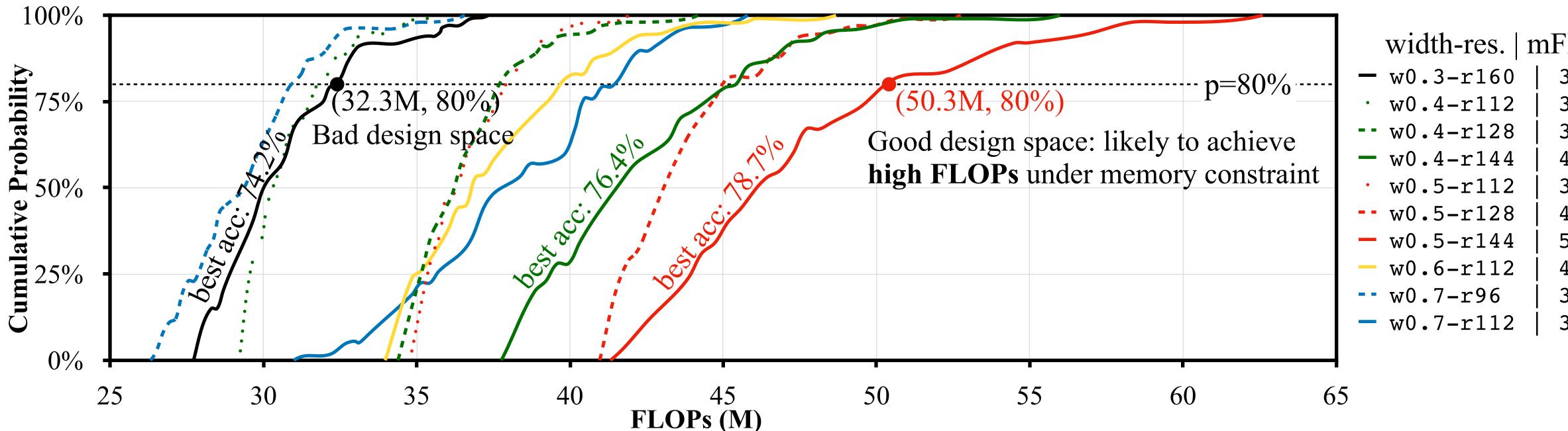
Analyzing **FLOPs distribution** of satisfying models in each search space: Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy



mFLOPs 32.5 46.9

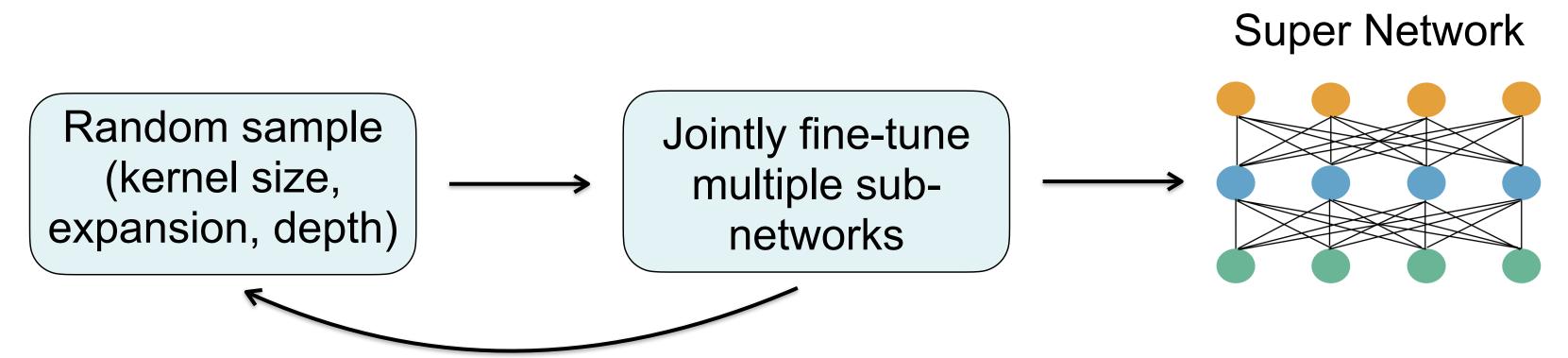
TinyNAS: (1) Automated search space optimization

Analyzing **FLOPs distribution** of satisfying models in each search space: Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy



mFLOPs 32.5 32.4 39.3 46.9 38.3 46.9 52.0 41.3 31.4 38.4

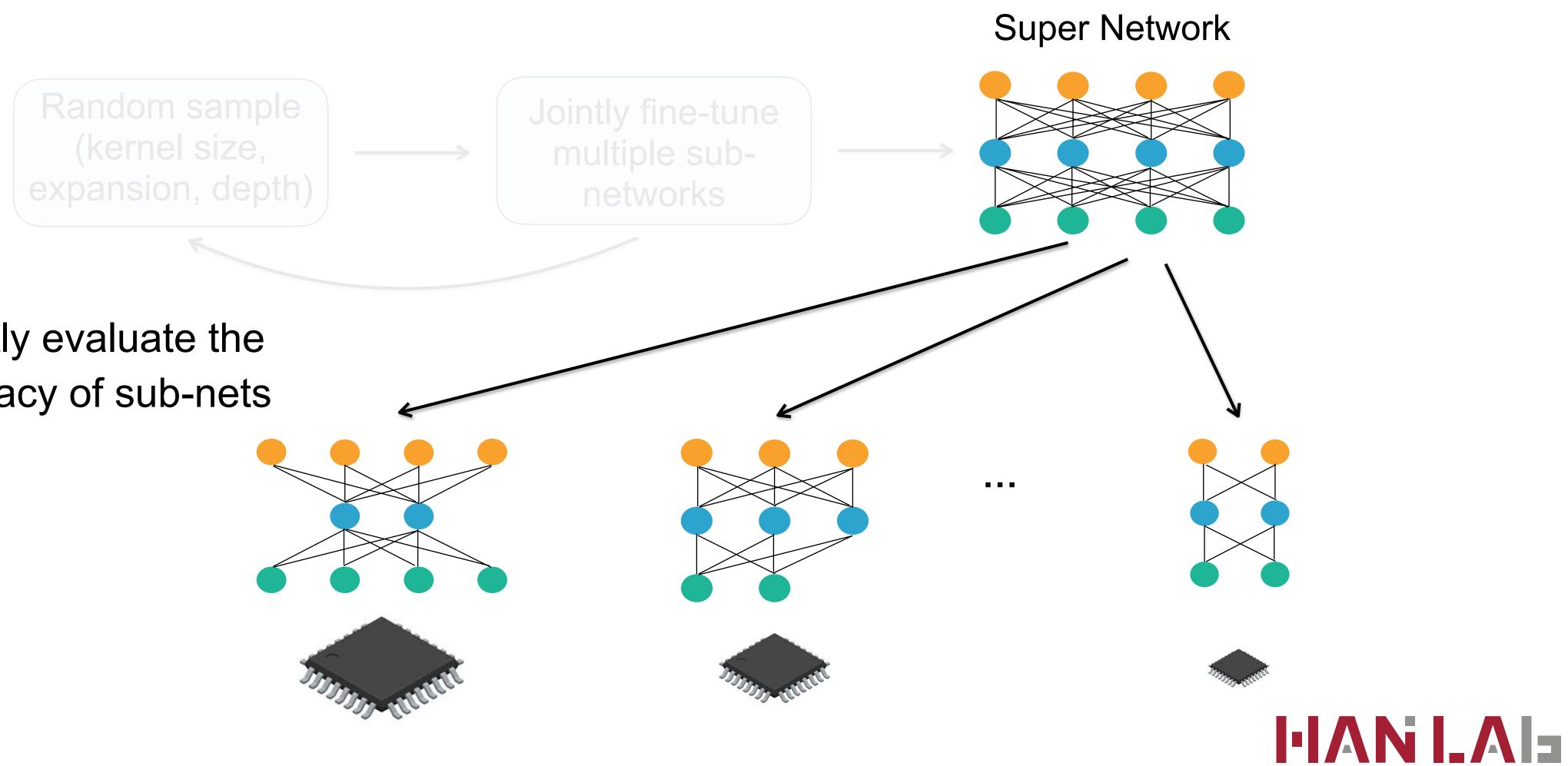
One-shot NAS through weight sharing



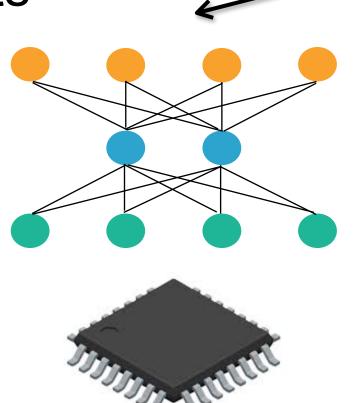
Small sub-networks are nested in large sub-networks.

* Cai et al., Once-for-All: Train One Network and Specialize it for Efficient Deployment, ICLR'20

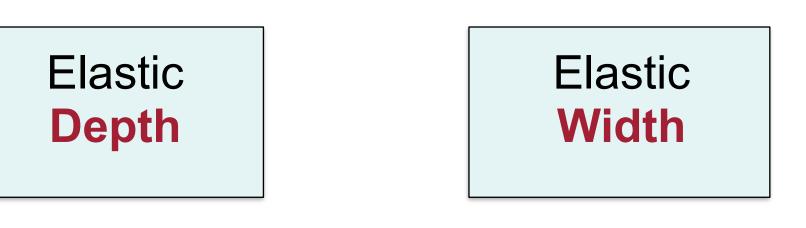
One-shot NAS through weight sharing

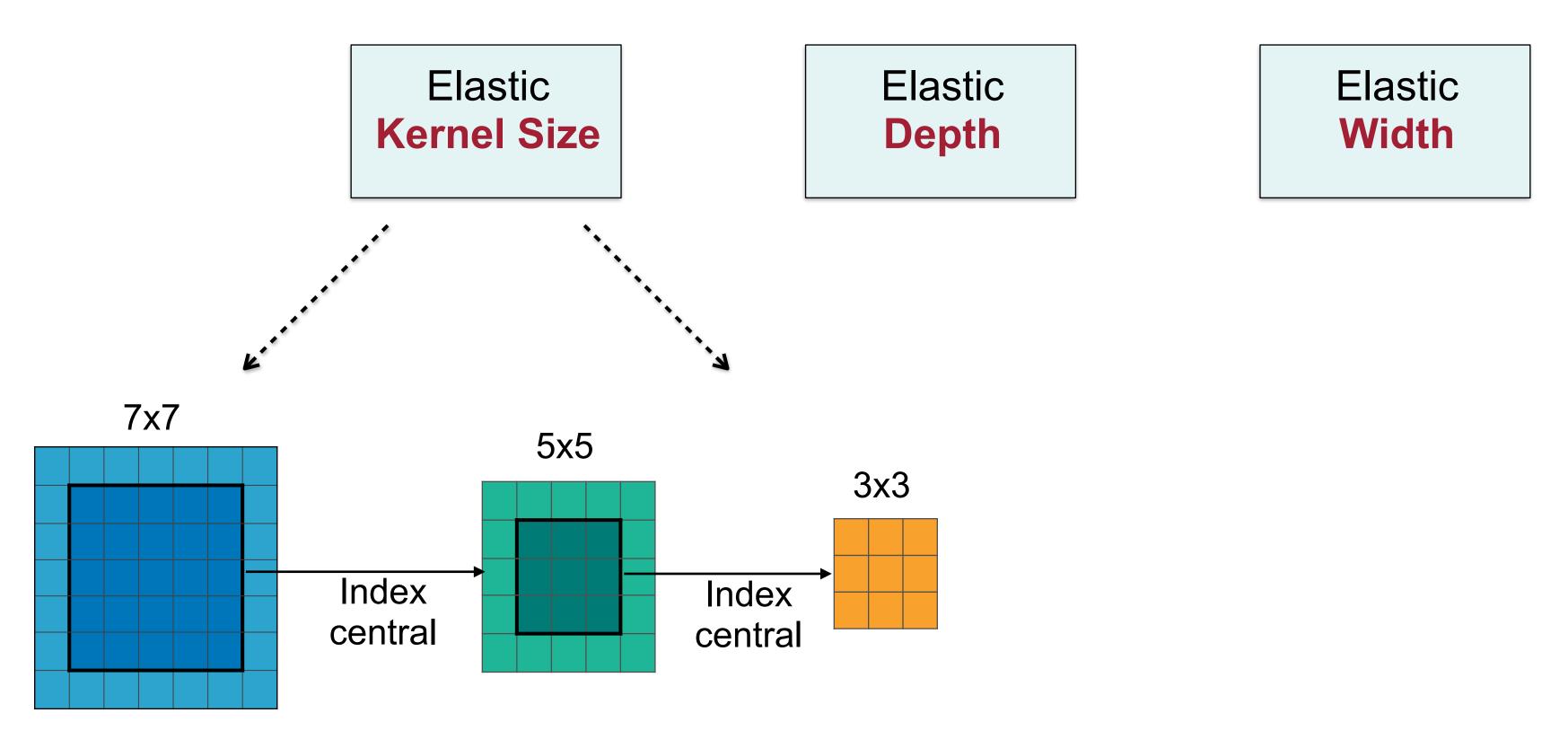


Directly evaluate the accuracy of sub-nets

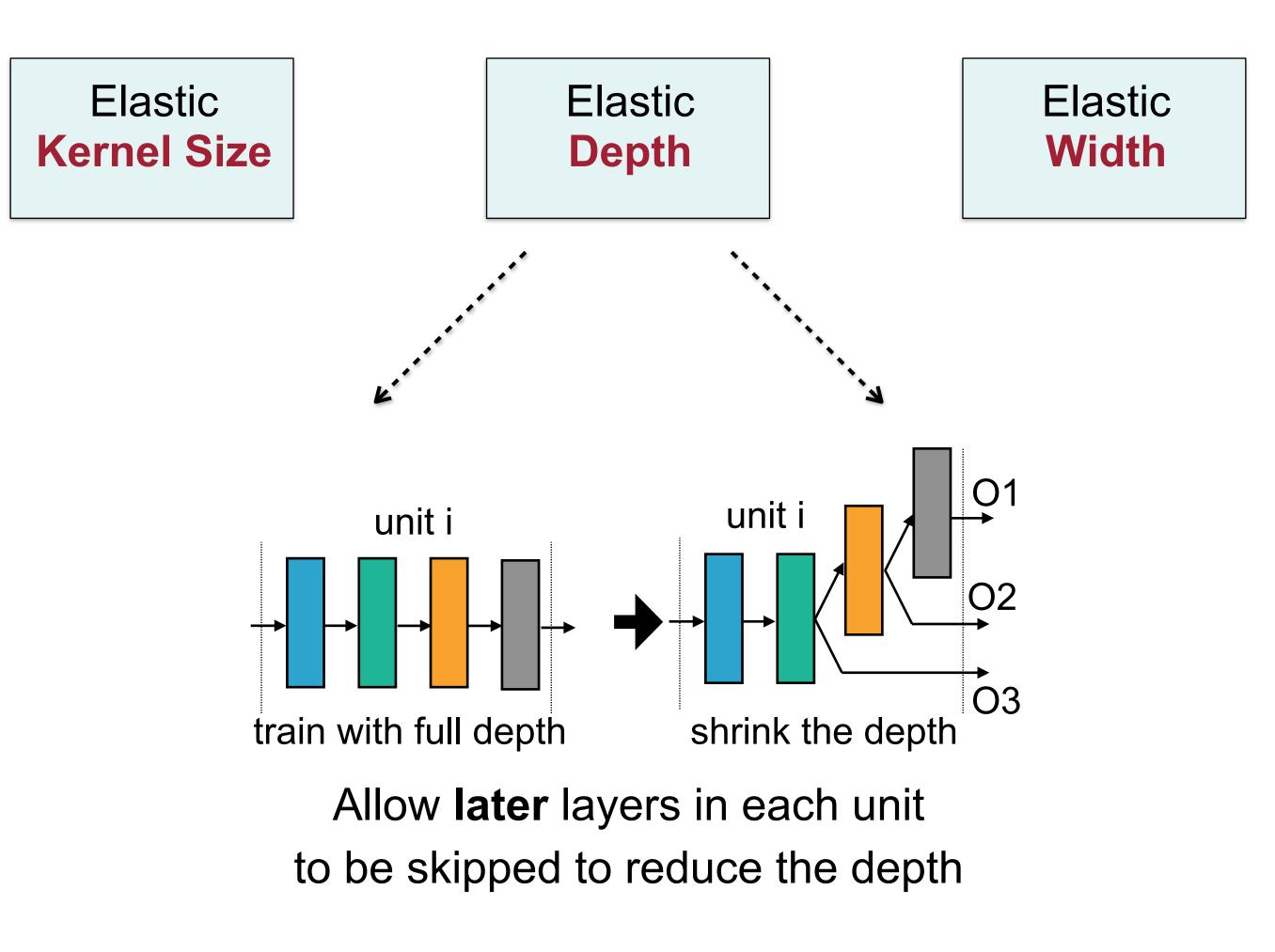


Elastic **Kernel Size**



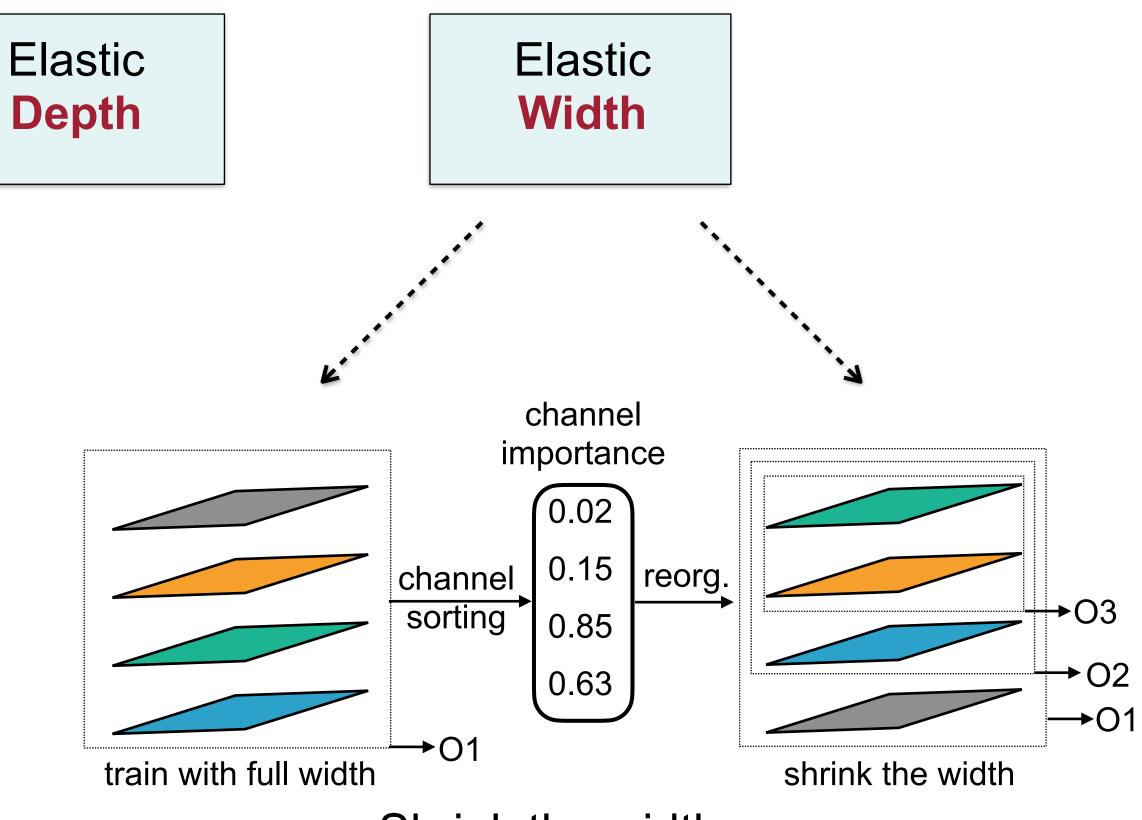


Start with **full** kernel size Smaller kernel takes centered weights





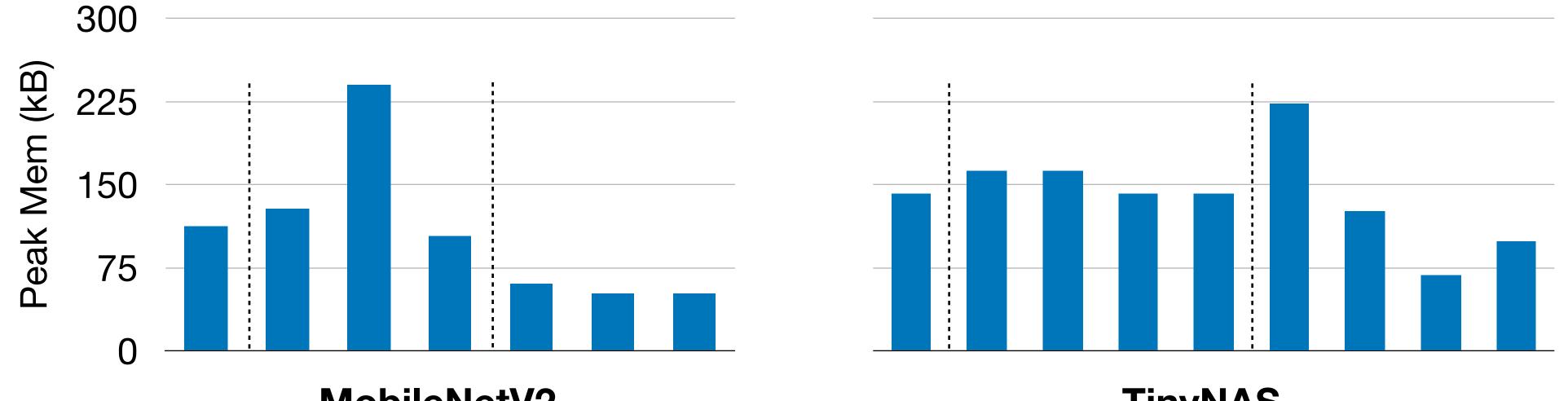
Elastic **Kernel Size**



Shrink the width

Keep the most important channels when shrinking via channel sorting

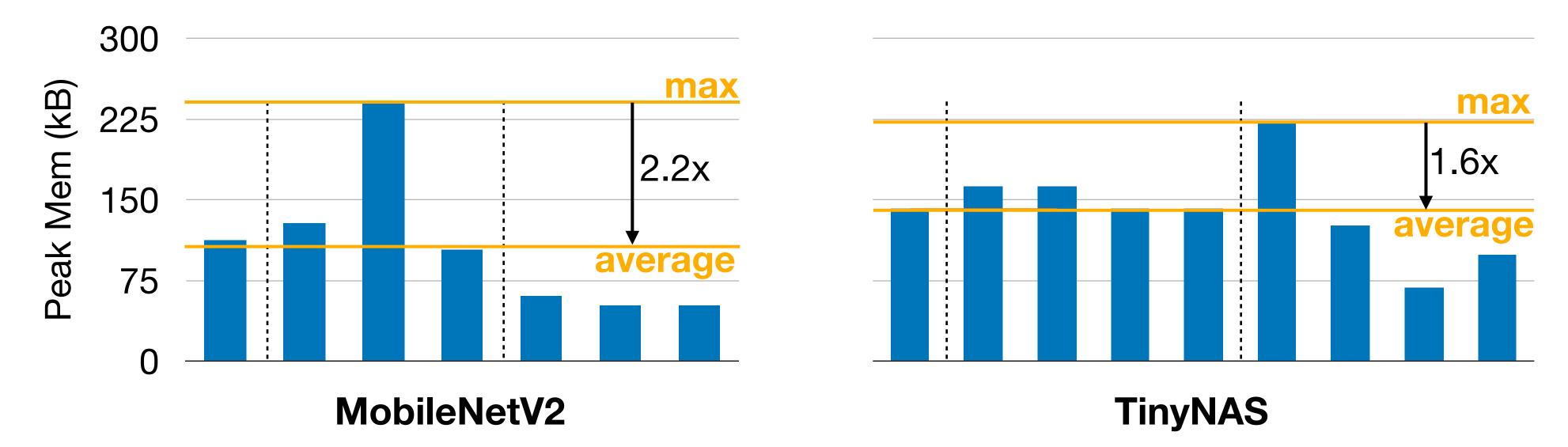
TinyNAS Better Utilizes the Memory



TinyNAS

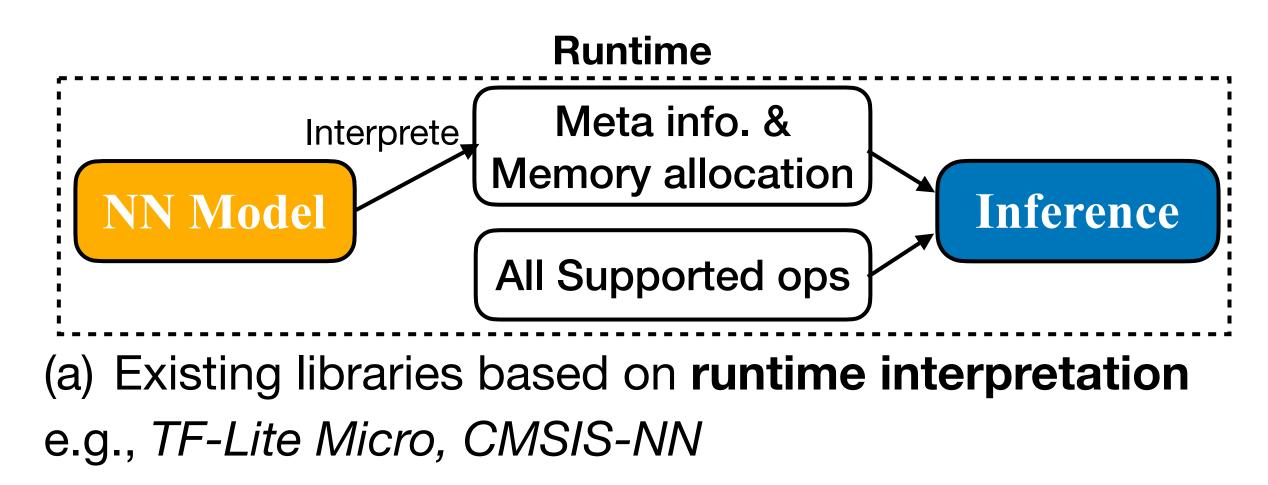
TinyNAS Better Utilizes the Memory

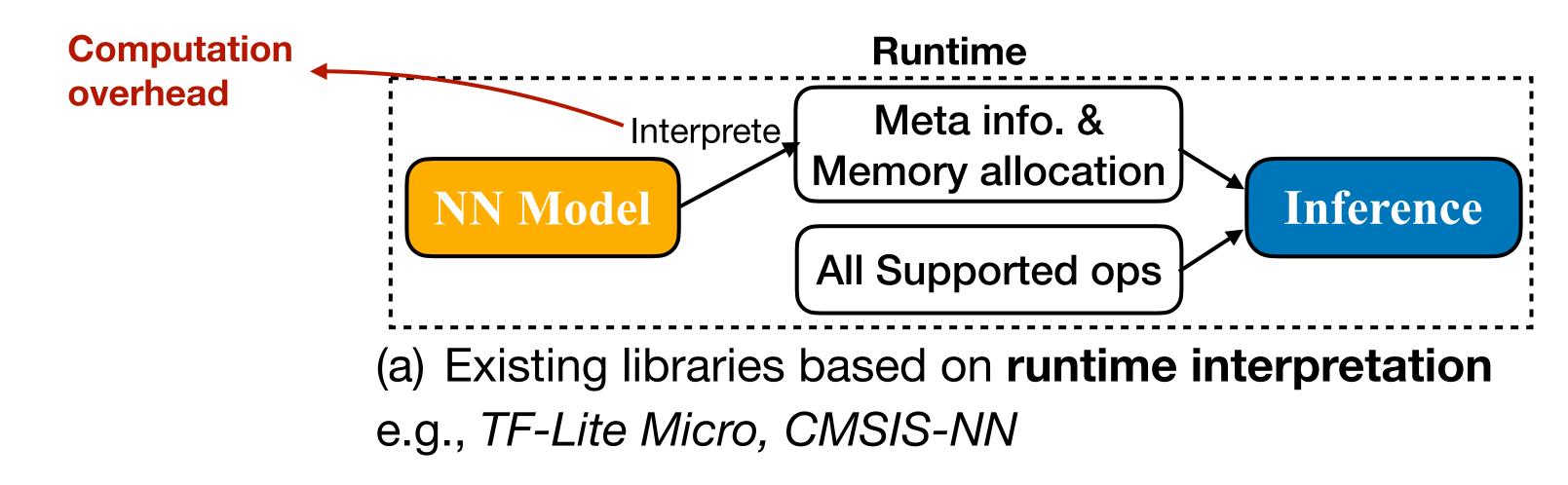
Peak Memory for First Two Stages

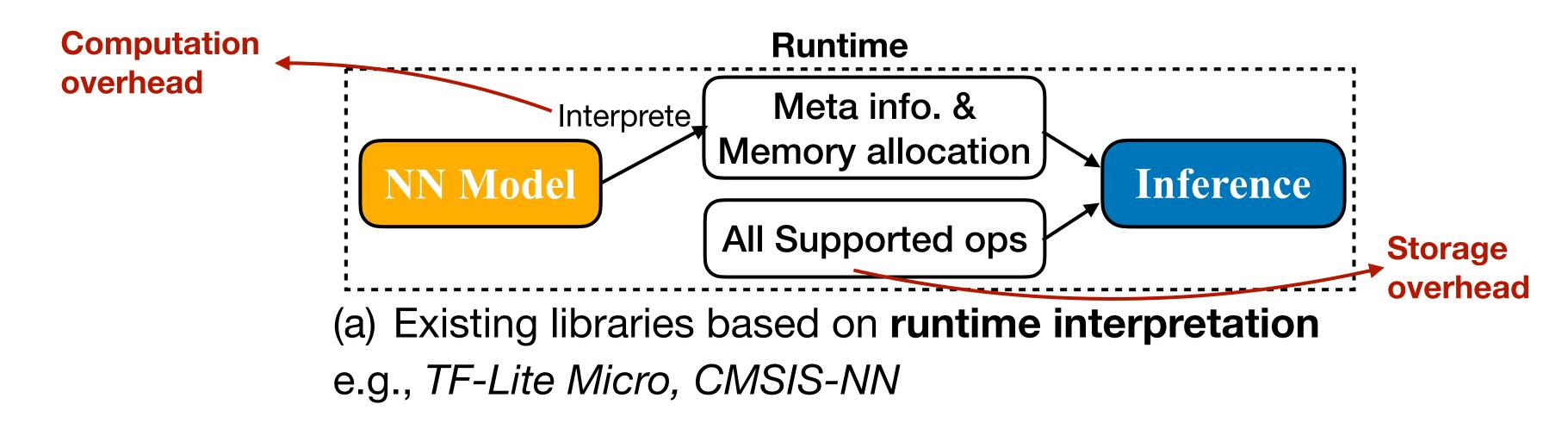


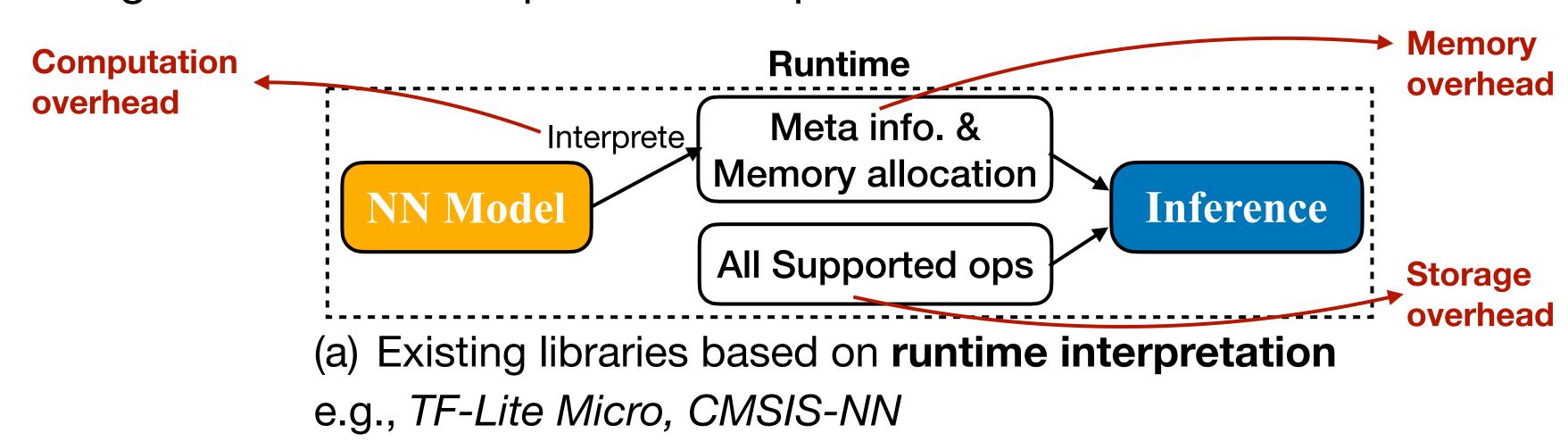
allowing us to fit a larger model at the same amount of memory

TinyNAS designs networks with more uniform peak memory for each block,

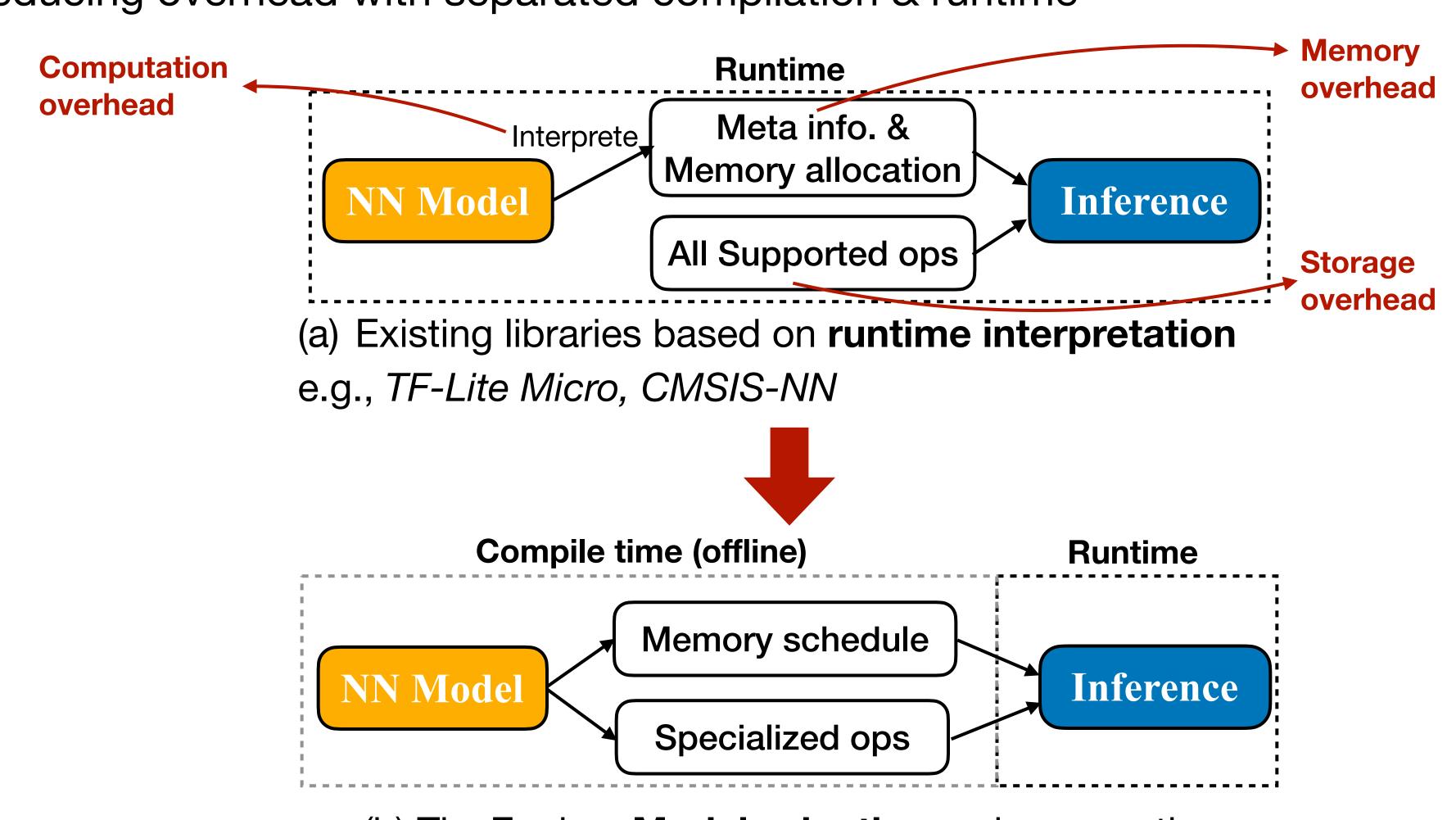




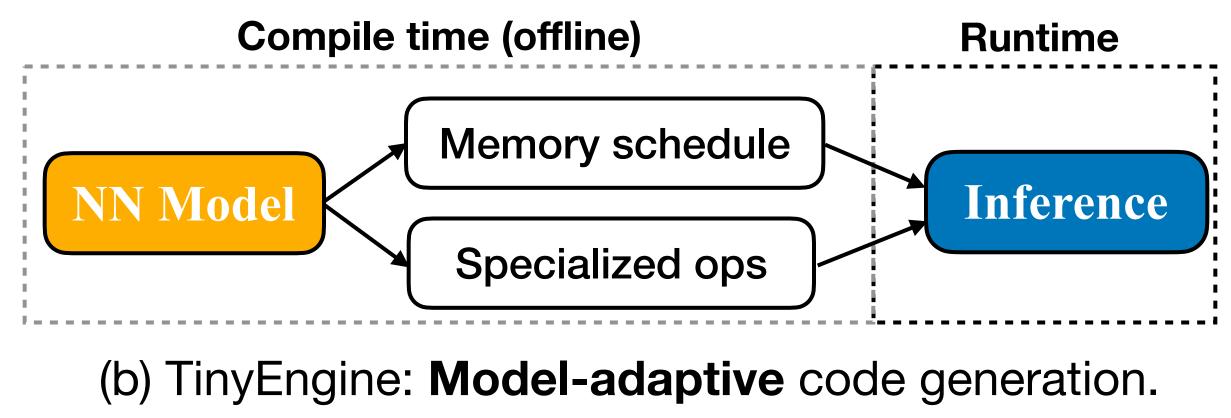


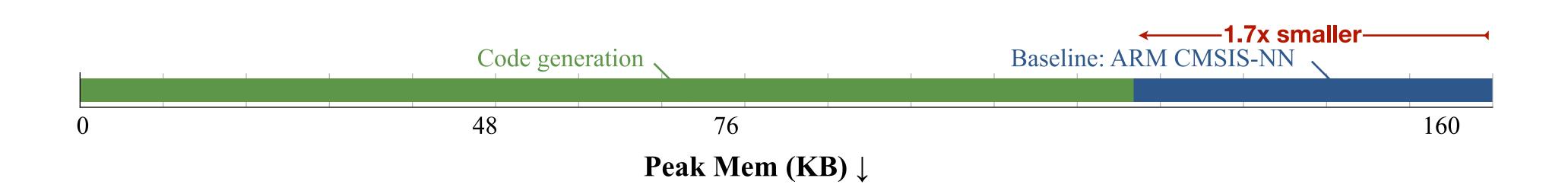


1. Reducing overhead with separated compilation & runtime

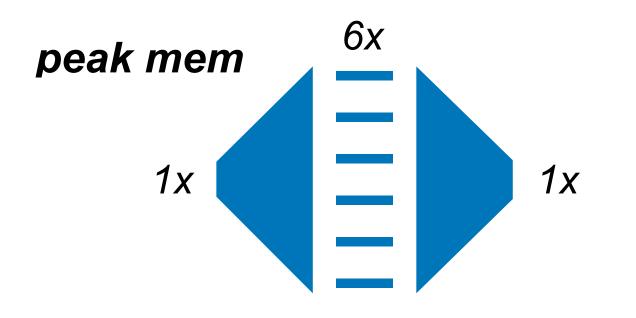


(b) TinyEngine: Model-adaptive code generation.

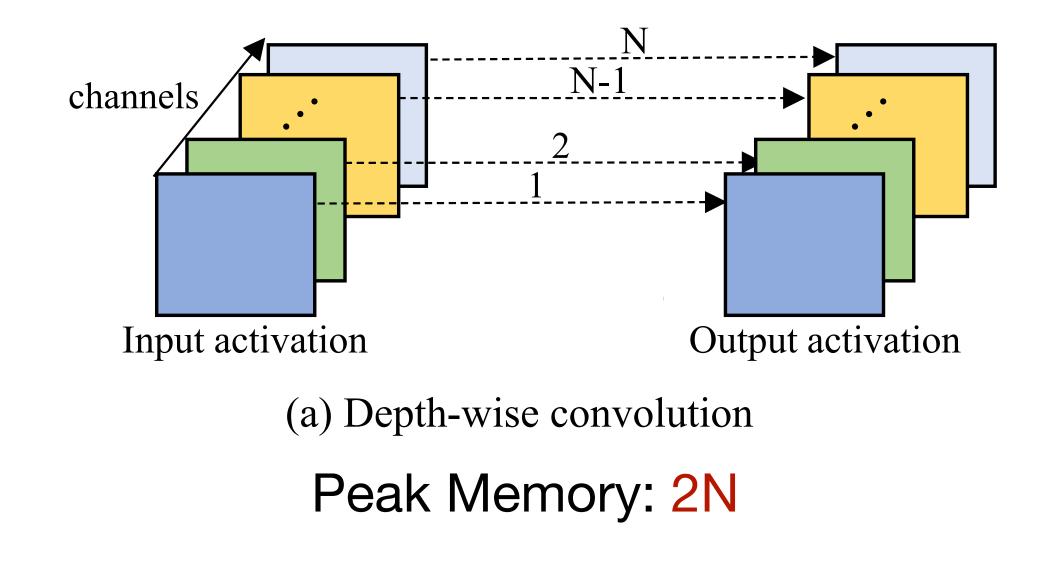


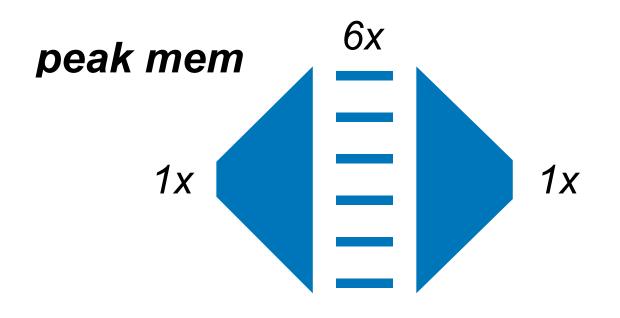


2. In-place depth-wise convolution

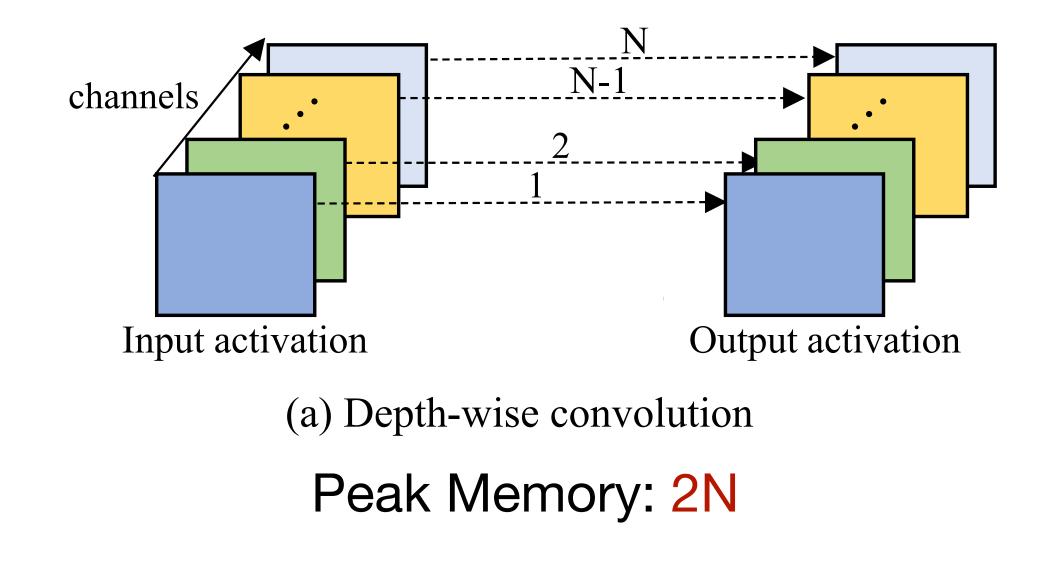


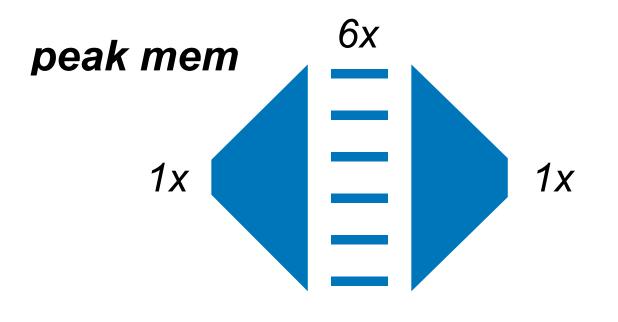
2. In-place depth-wise convolution

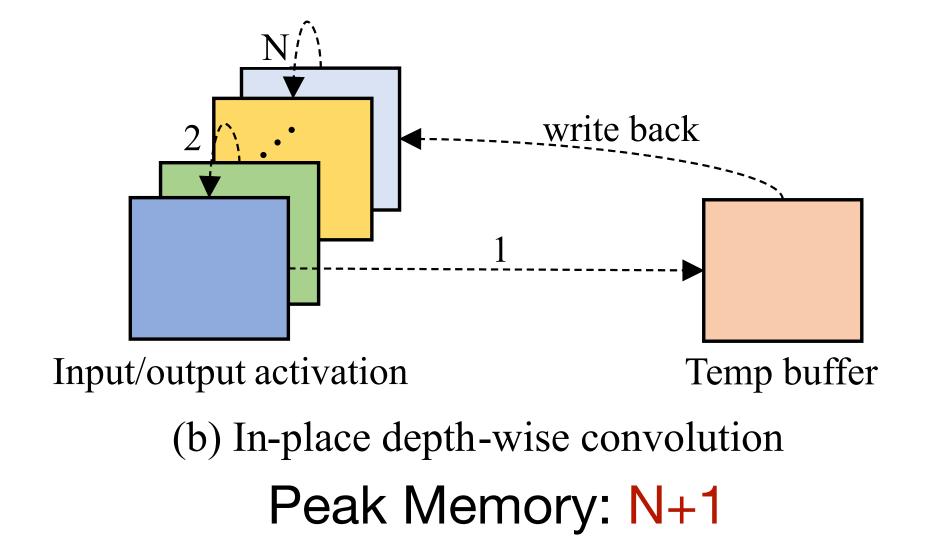




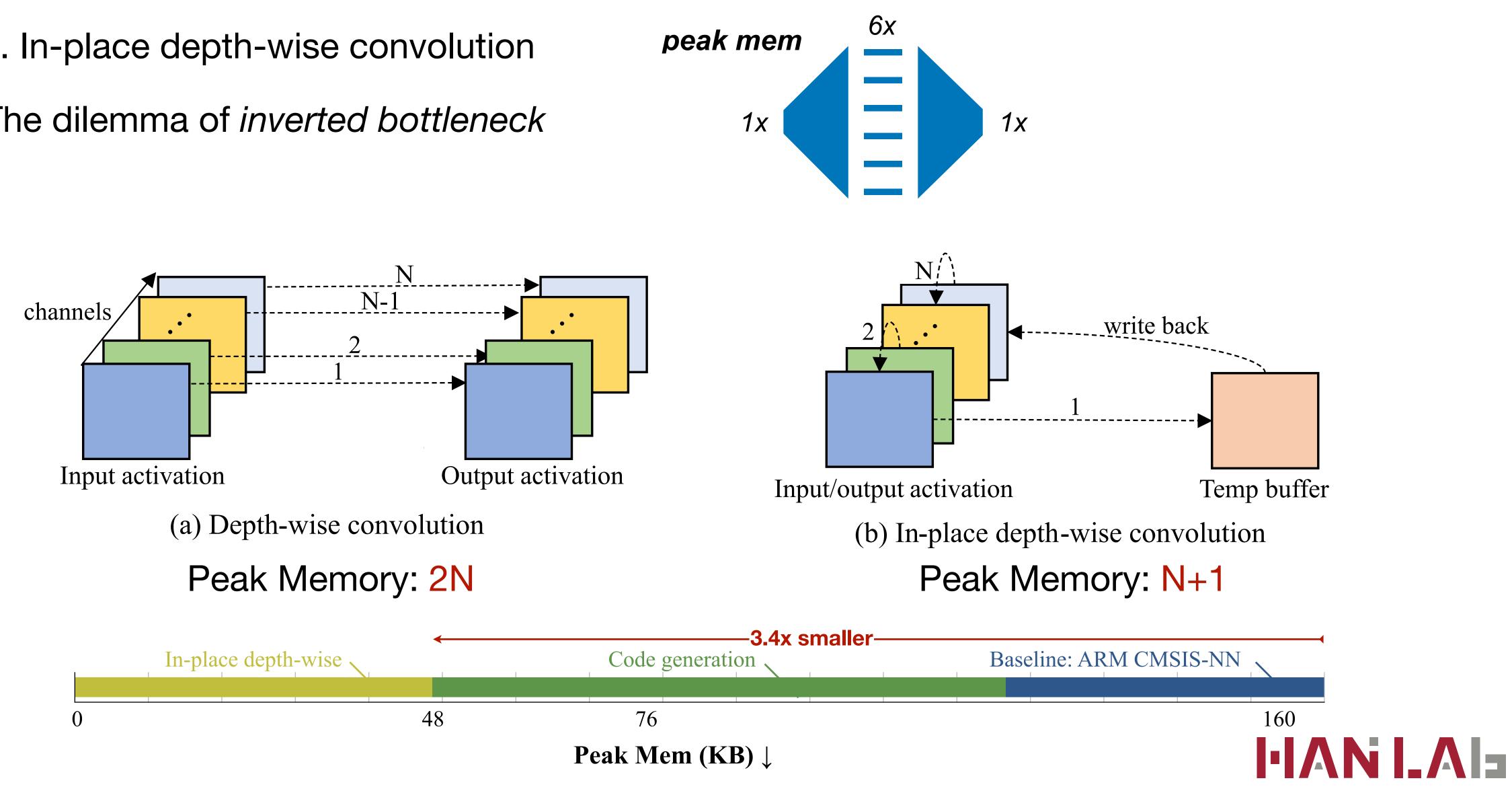
2. In-place depth-wise convolution



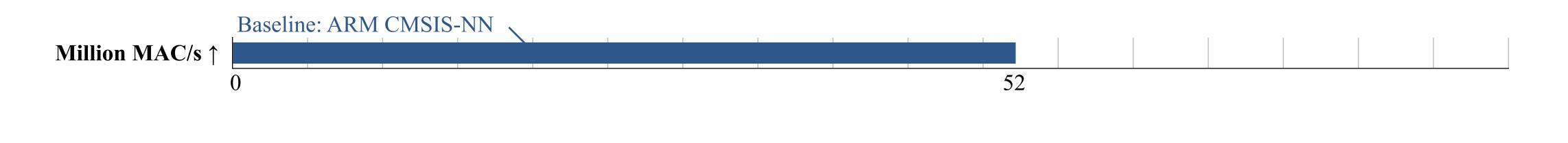




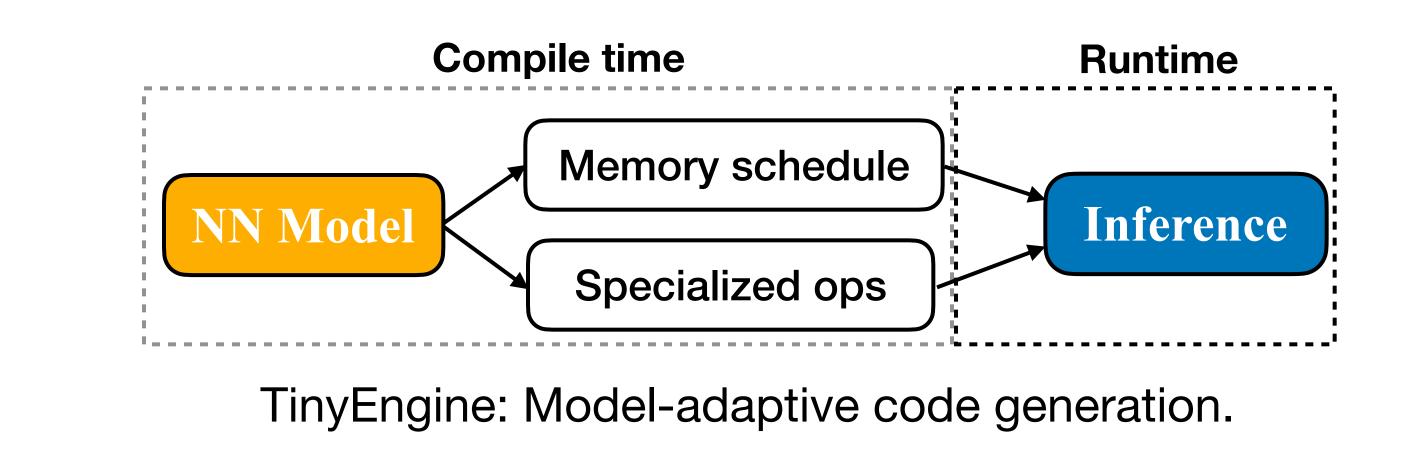
2. In-place depth-wise convolution

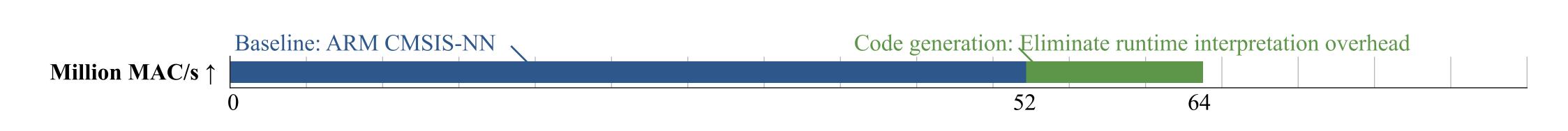


Analyzing Million MAC/s improved by each technique



Analyzing Million MAC/s improved by each technique

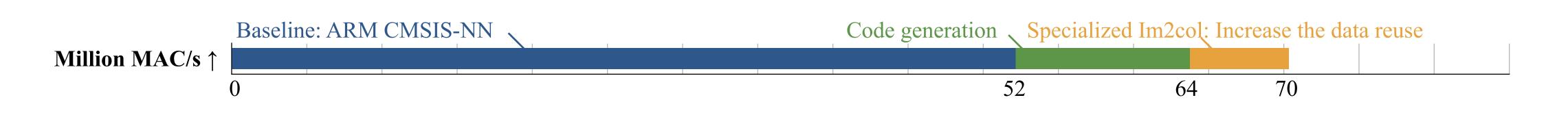




(1) Code generator-based compilation -> Eliminate overheads of runtime interpretation

- Analyzing Million MAC/s improved by each technique
- (2) Model-adaptive memory scheduling -> Increase data reuse for each layer

 - $M = \max$ (kernel size²_L)
 - tiling size of feature map width $_{L_i} =$



(a) Model-level memory scheduling

$$L_i \cdot \text{in channels}_{L_i}; \forall L_i \in \boldsymbol{L}$$

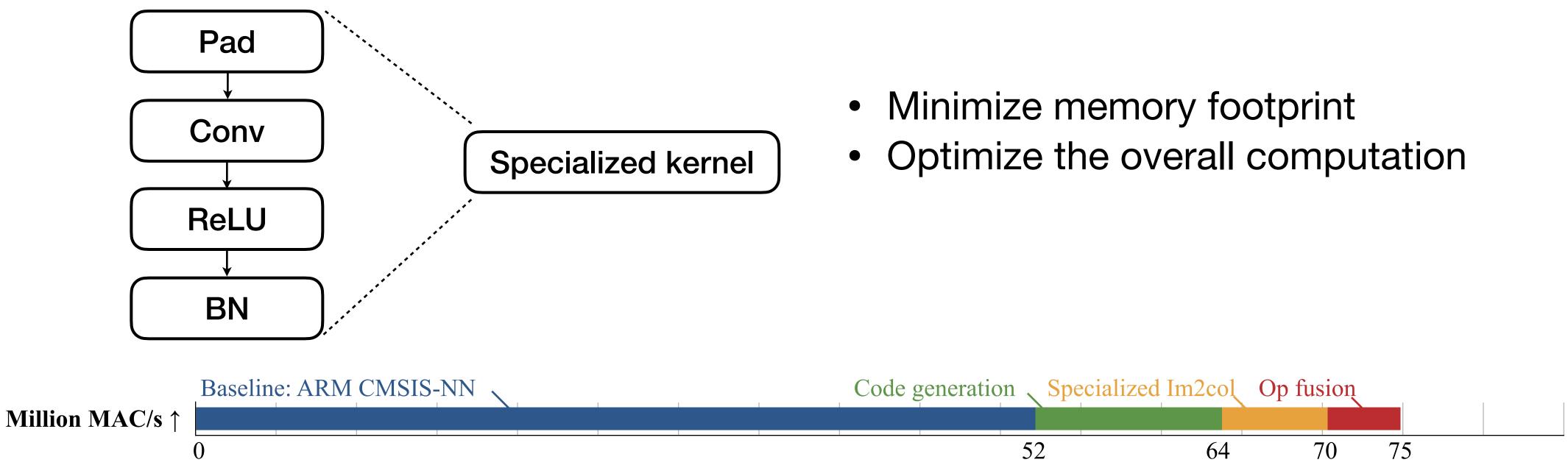
(b) Tile size configuration for Im2col

$$\lfloor M / \left(\text{kernel size}_{L_j}^2 \cdot \text{in channels}_{L_j} \right) \rfloor$$

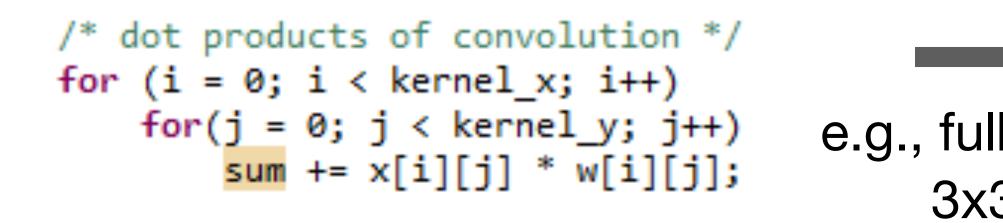
Analyzing Million MAC/s improved by each technique

(3) Computation Kernel Specialization: Operation fusion

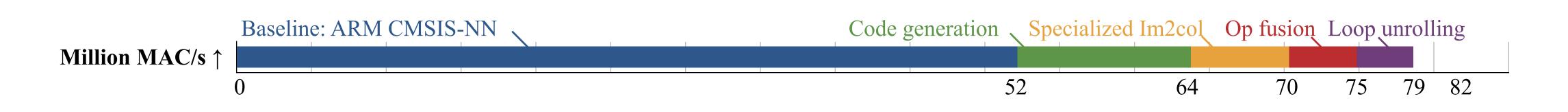
e.g., fuse Pad+Conv+ReLU+BN

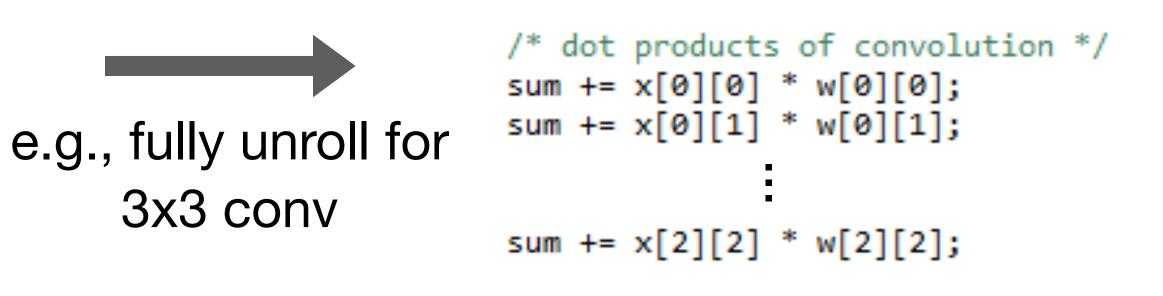


Analyzing **Million MAC/s** improved by each technique (3) Computation Kernel Specialization: Loop unrolling

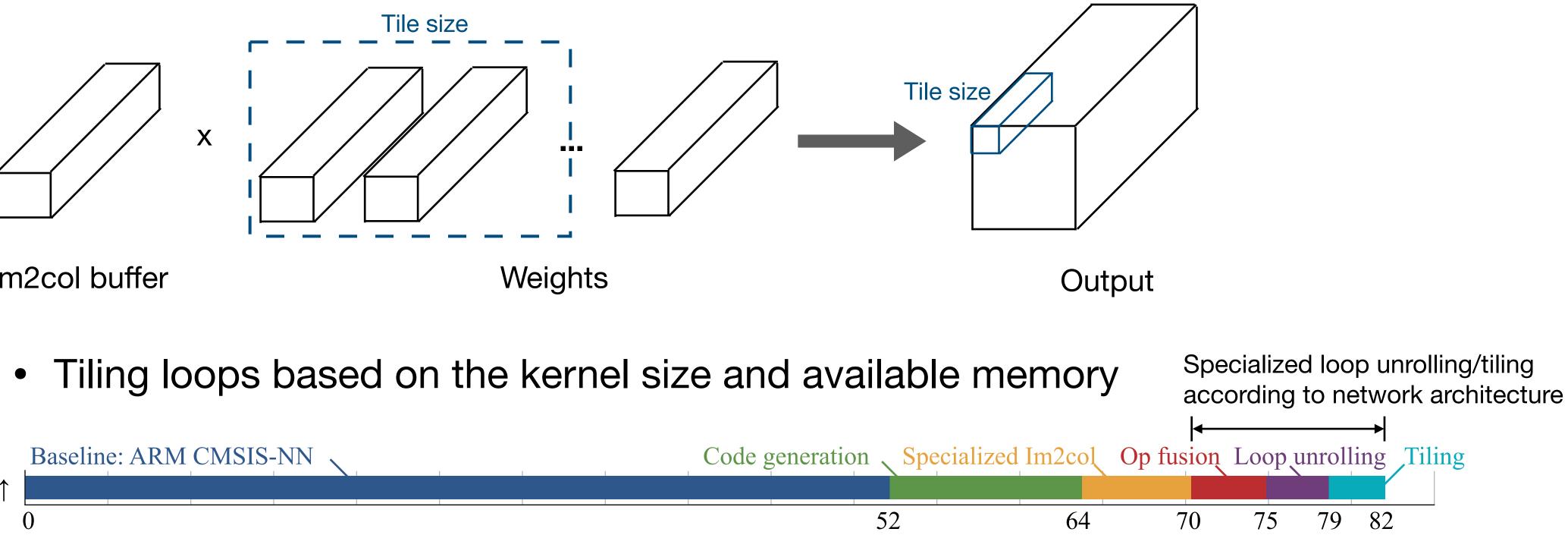


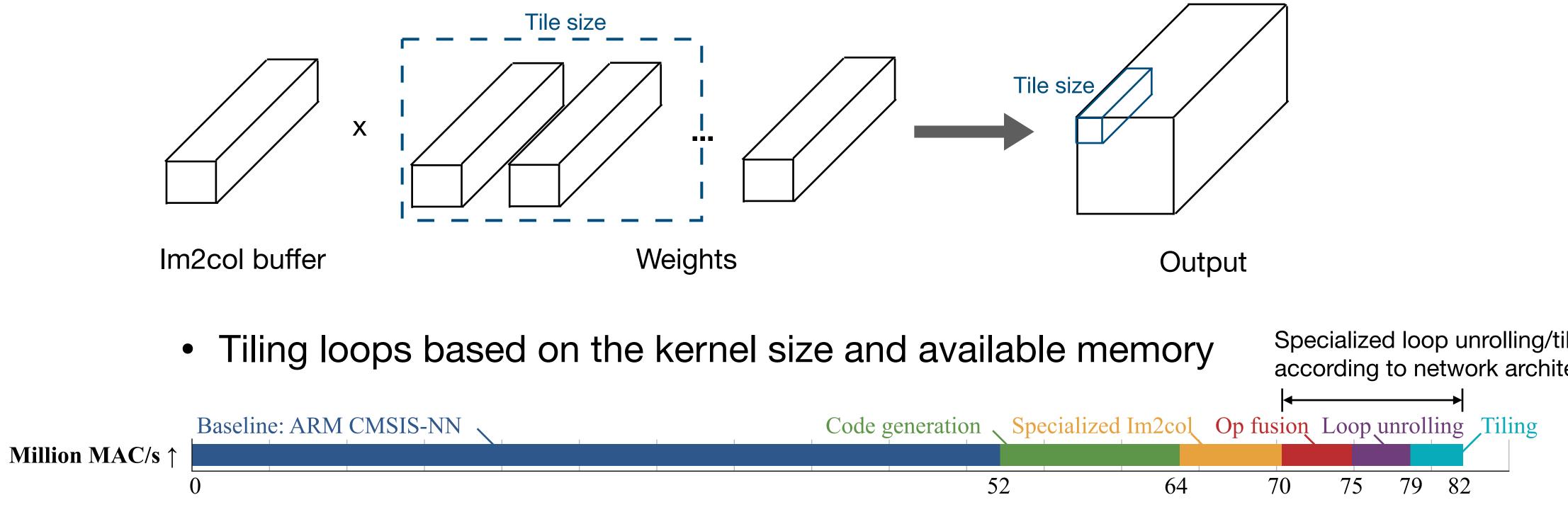
Eliminate the branch instruction overheads of loops

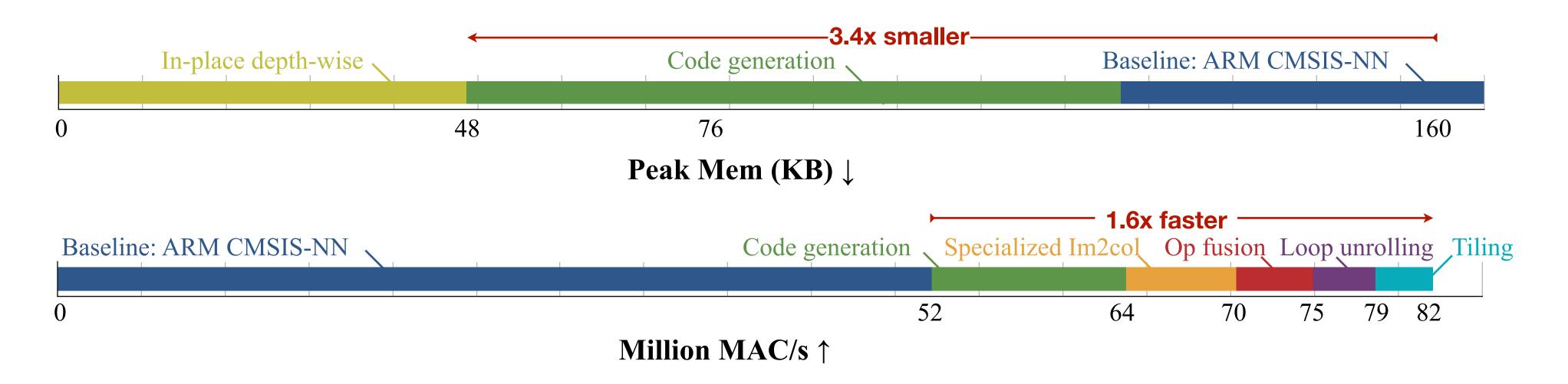


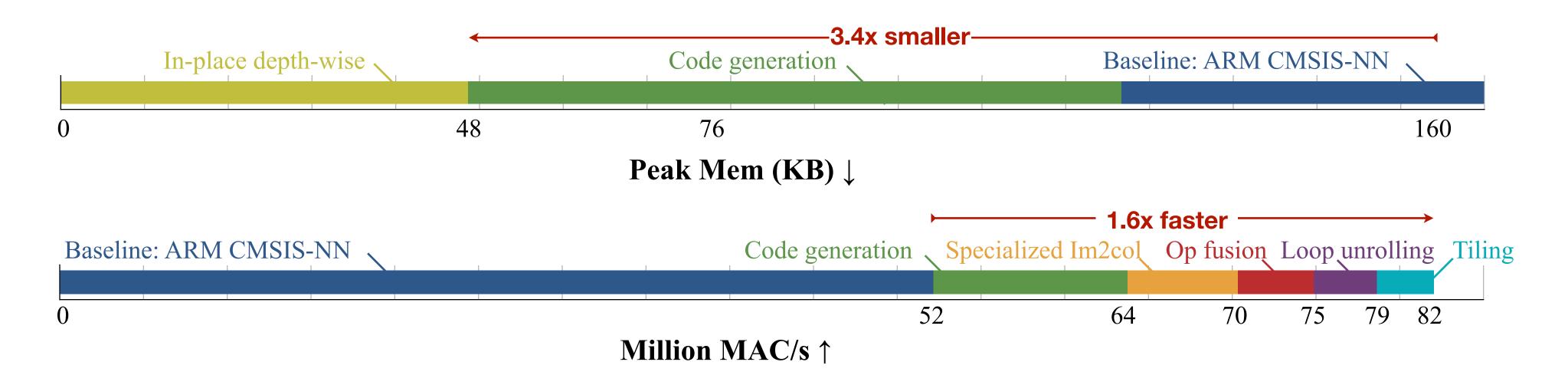


- Analyzing Million MAC/s improved by each technique
- (3) Computation Kernel Specialization: Loop tiling for each layer



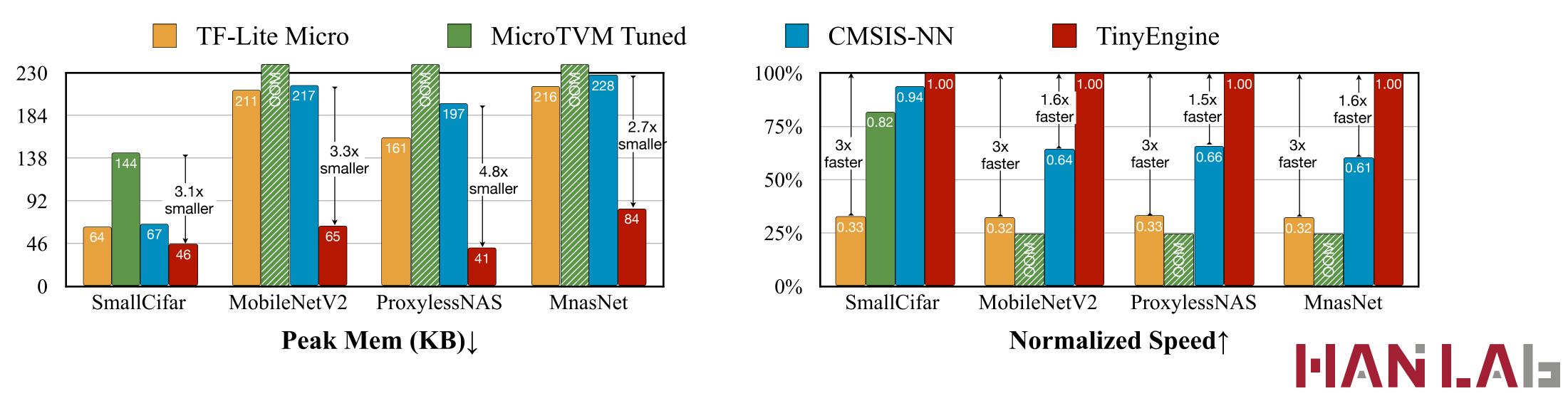


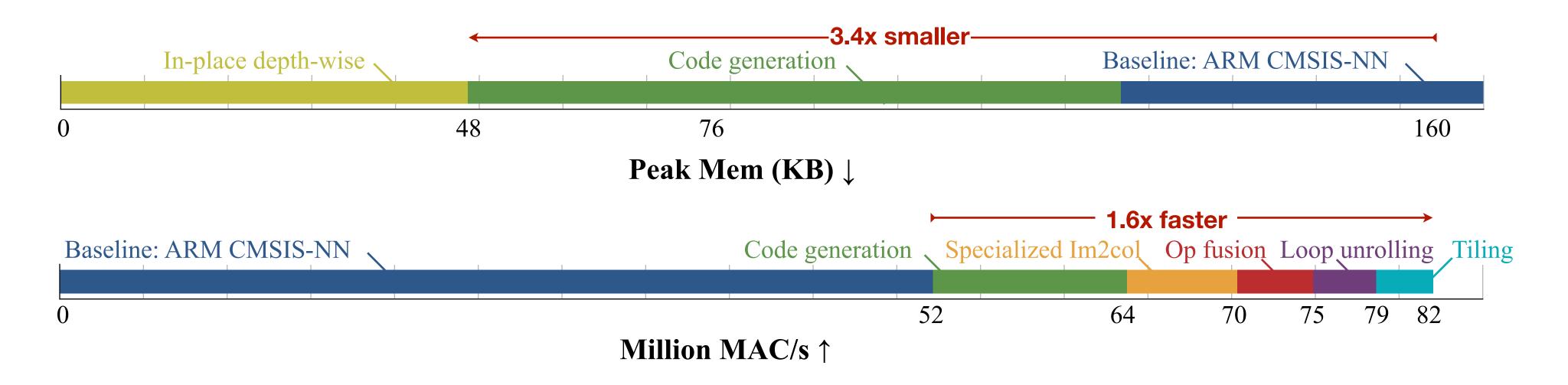




Consistent improvement on different networks \bullet

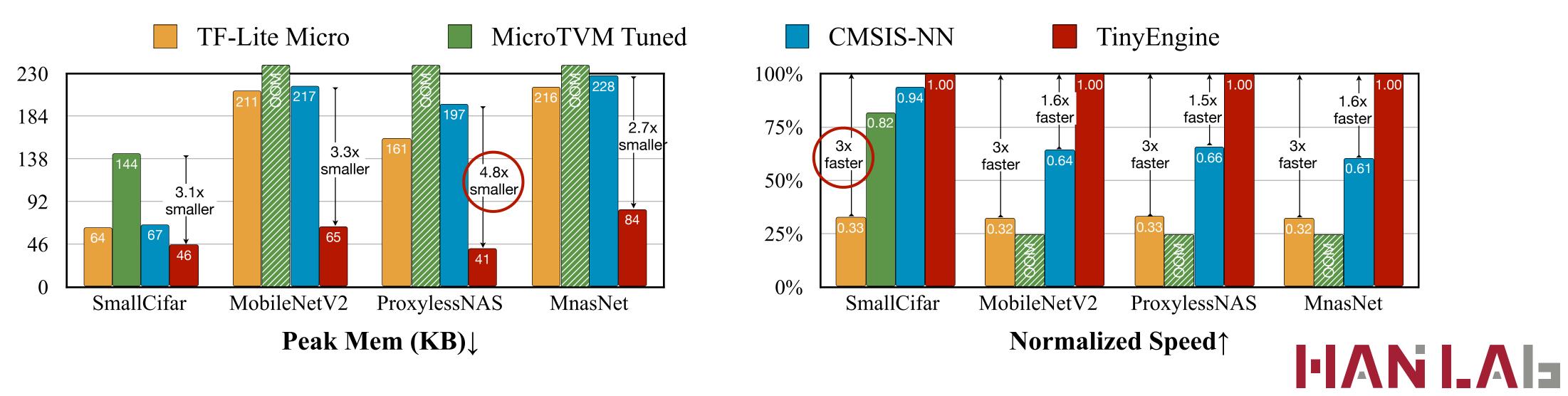
Plif





Consistent improvement on different networks \bullet

Plif



Experimental Results

We focus on large-scale datasets to reflect real-life use cases.

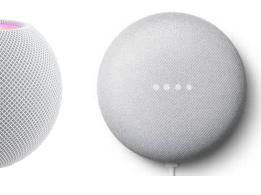
Datasets:

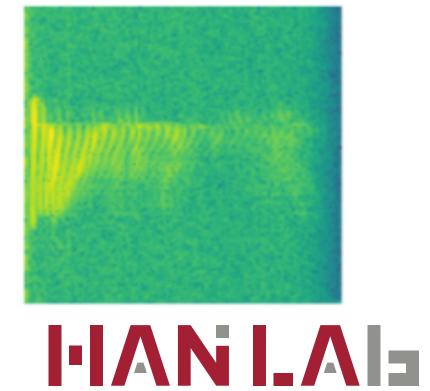
- (1) ImageNet-1000
- (2) Wake Words
 - Visual: Visual Wake Words
 - Audio: Google Speech Commands

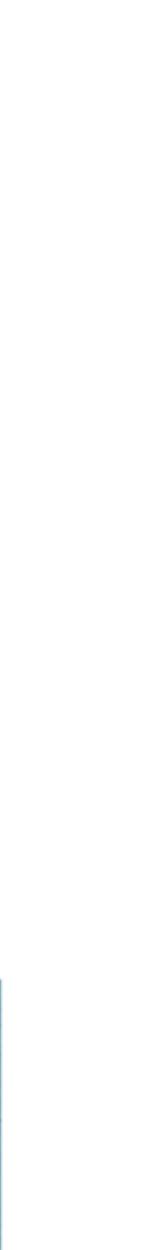
(a) 'Person'

(b) 'Not-person'

yes

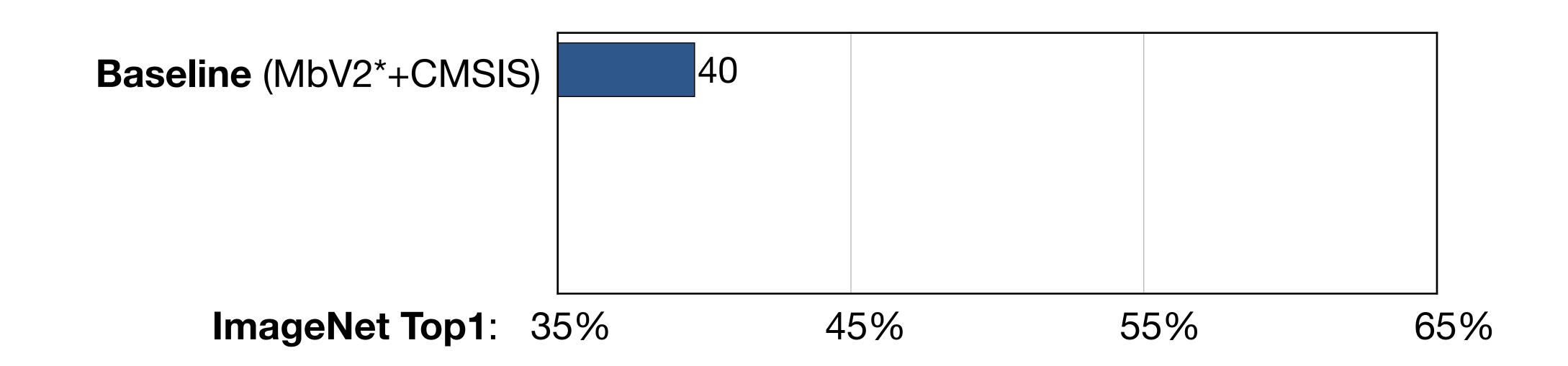






System-Algorithm Co-design Gives the Best Results

ImageNet classification on STM32F746 MCU (**320kB SRAM**, **1MB Flash**) lacksquare



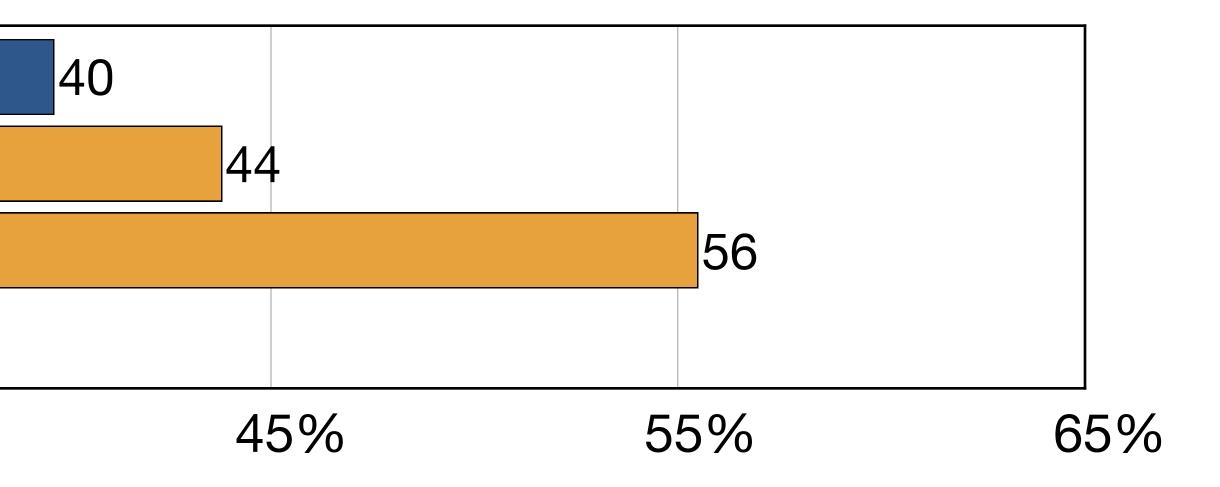
* scaled down version: width multiplier 0.3, input resolution 80

System-Algorithm Co-design Gives the Best Results

ImageNet classification on STM32F746 MCU (**320kB SRAM**, **1MB Flash**) \bullet

Baseline (MbV2*+CMSIS) **System-only** (MbV2*+TinyEngine) **Model-only** (TinyNAS+CMSIS)

ImageNet Top1: 35%



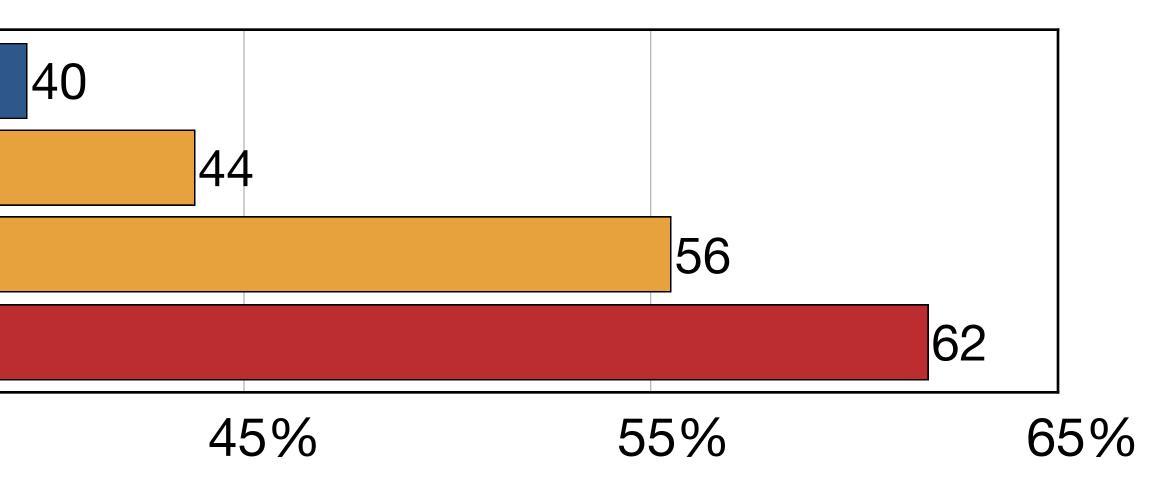
System-Algorithm Co-design Gives the Best Results

Baseline (MbV2*+CMSIS) **System-only** (MbV2*+TinyEngine) **Model-only** (TinyNAS+CMSIS) **Co-design** (TinyNAS+TinyEngine)

ImageNet Top1: 35%

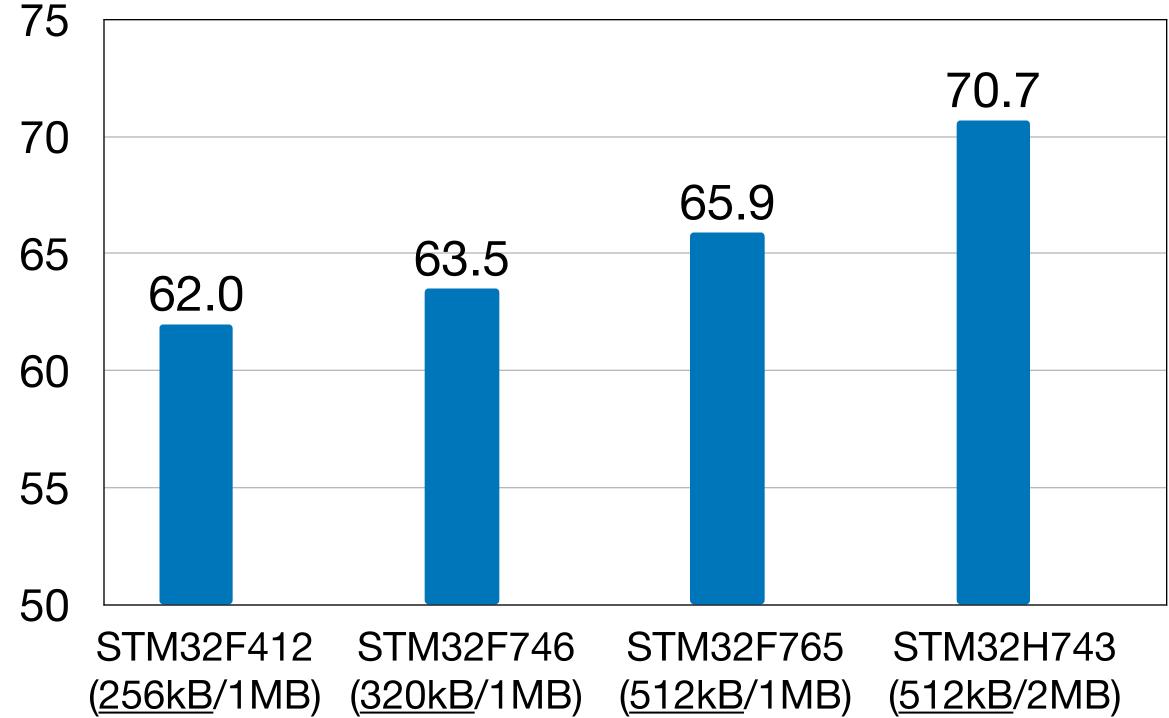
* scaled down version: width multiplier 0.3, input resolution 80

• ImageNet classification on STM32F746 MCU (**320kB SRAM**, **1MB Flash**)



Handling Diverse Hardware

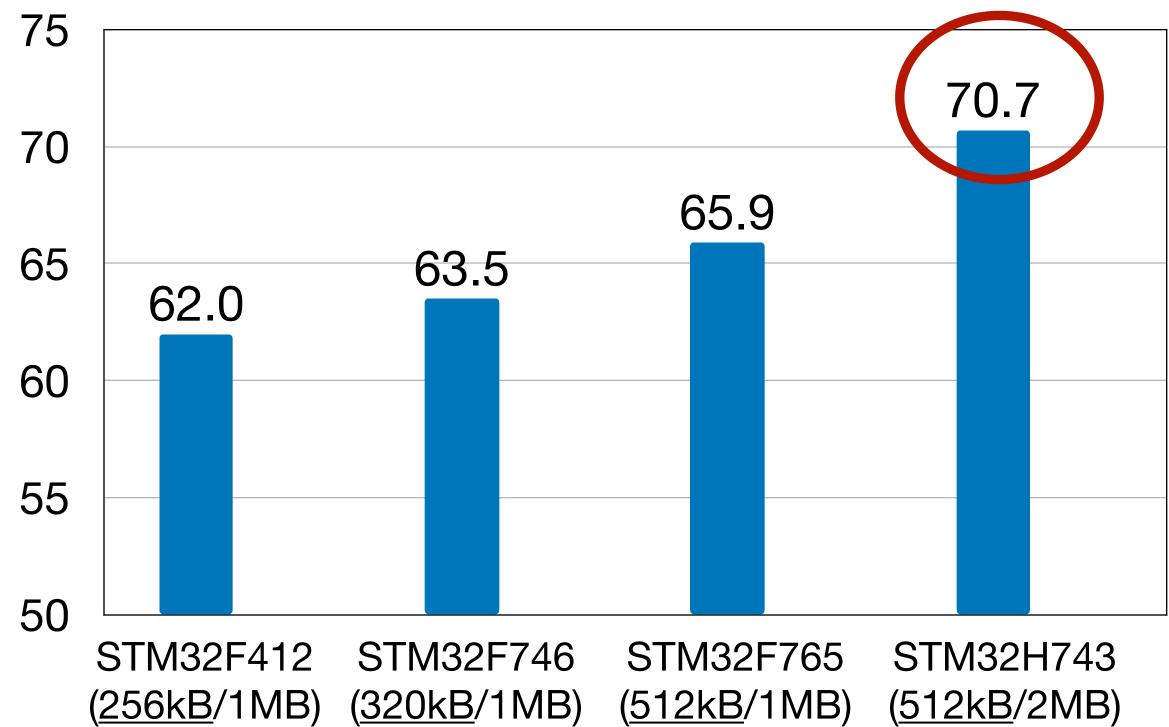
Specializing models (int4) for different MCUs (<u>SRAM</u>/Flash)



ImageNet Top-1 Accuracy (%)

Handling Diverse Hardware

Specializing models (int4) for different MCUs (<u>SRAM</u>/Flash)

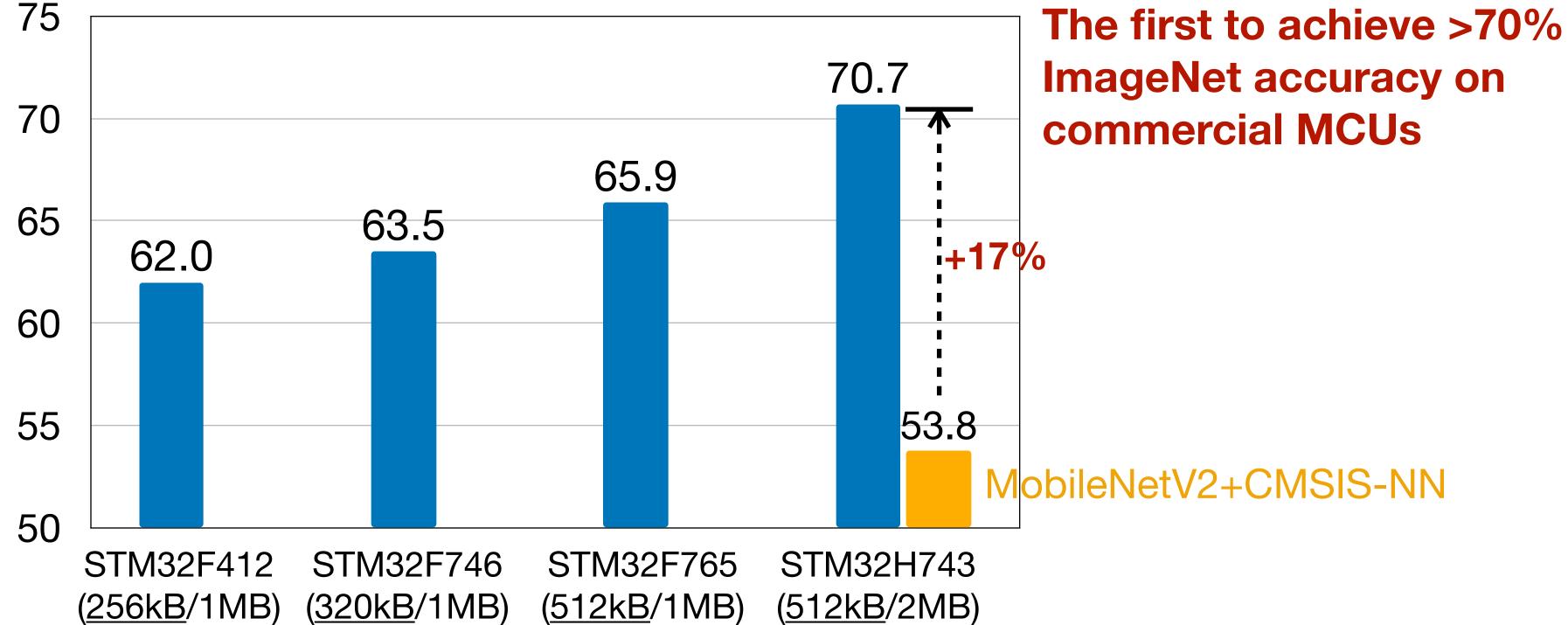


ImageNet Top-1 Accuracy (%)

The first to achieve >70% ImageNet accuracy on **commercial MCUs**

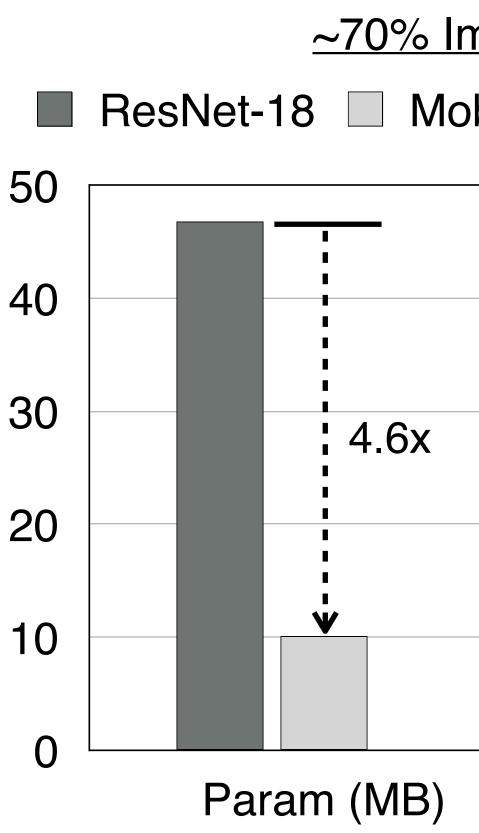
Handling Diverse Hardware

• Specializing models (int4) for different MCUs (<u>SRAM</u>/Flash)



ImageNet Top-1 Accuracy (%)

Reduce Both Model Size and Activation Size



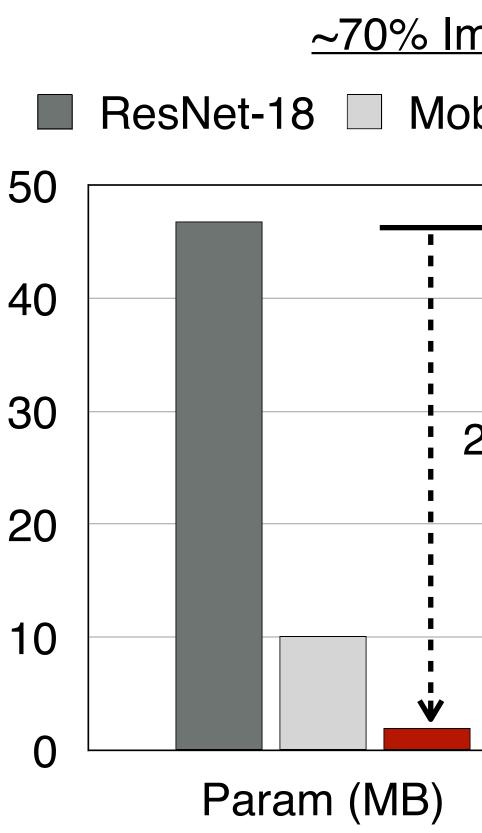
~70% ImageNet Top-1

ResNet-18 MobileNetV2-0.75 MCUNet

4 0.7
1.8x

Peak Activation (MB)

Reduce Both Model Size and Activation Size



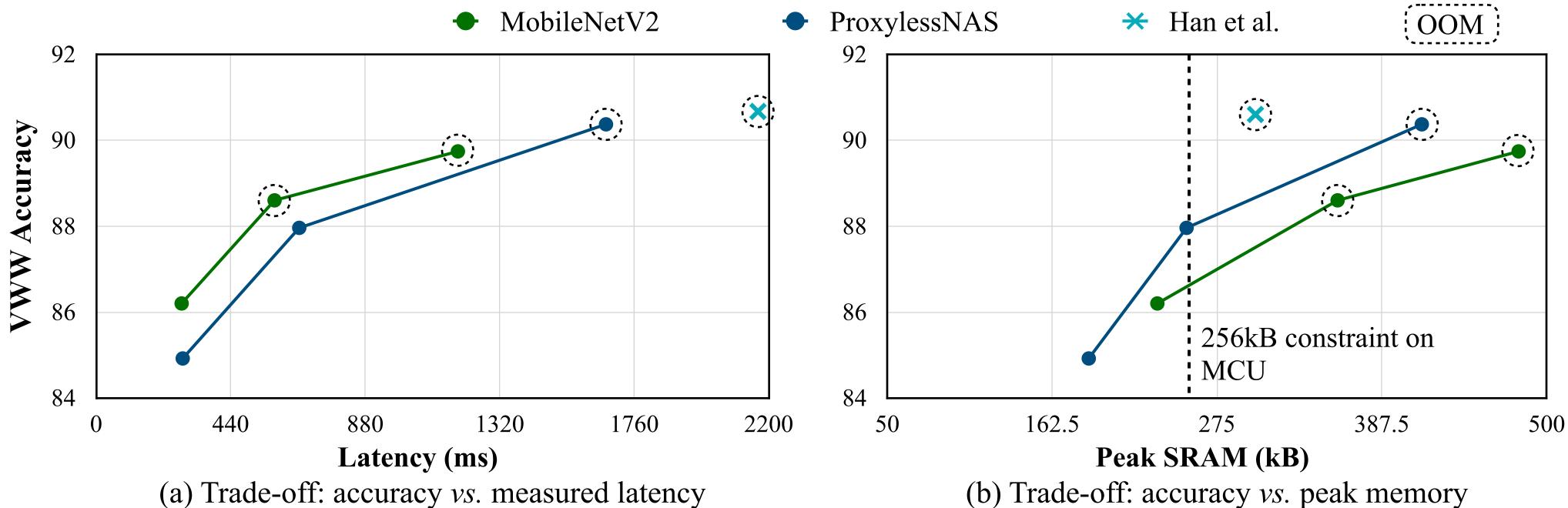
~70% ImageNet Top-1

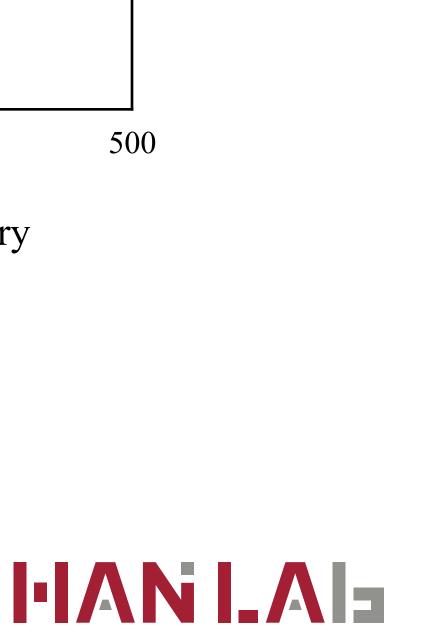
ResNet-18 MobileNetV2-0.75 MCUNet

_			
24.6x			
		100.	
		13.8>	~

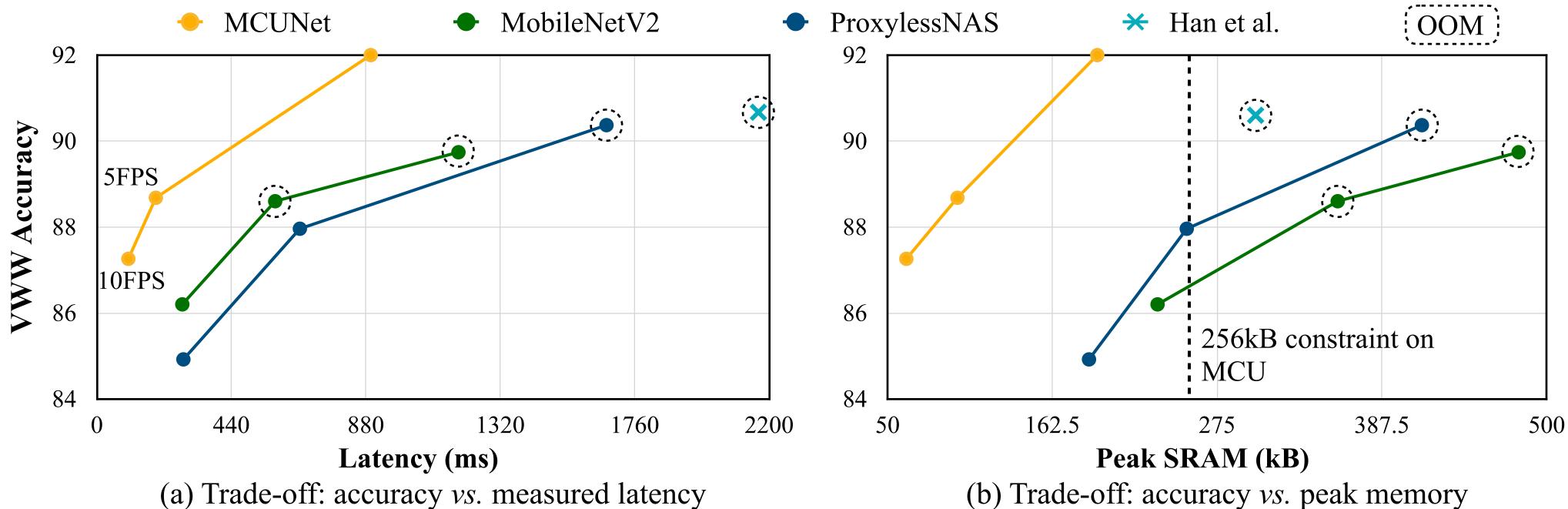
Peak Activation (MB)

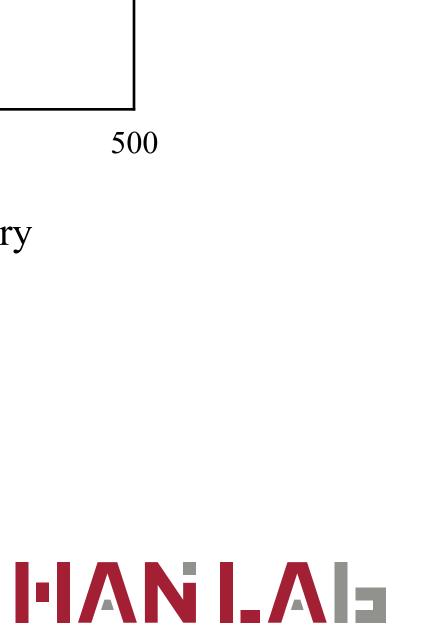
Visual Wake Words (VWW)



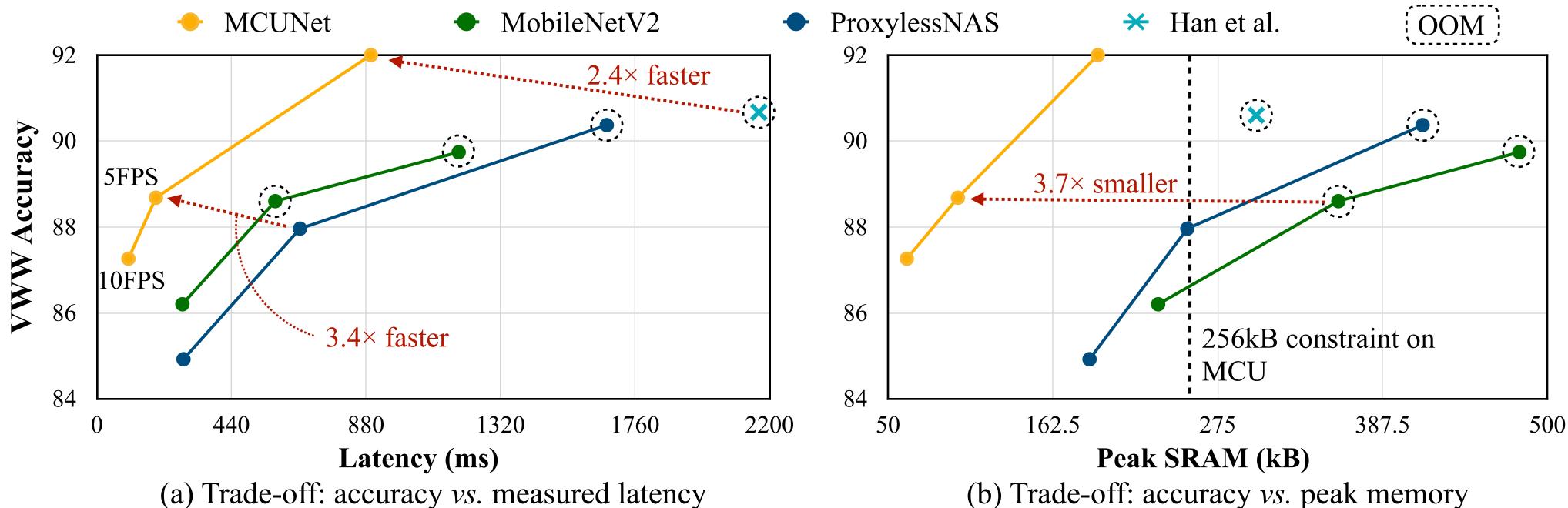


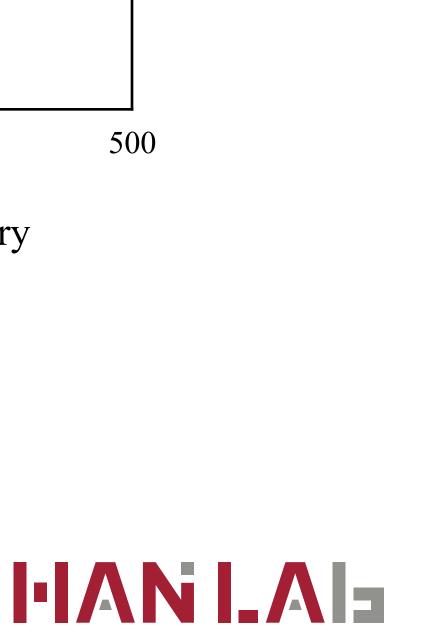
Visual Wake Words (VWW)



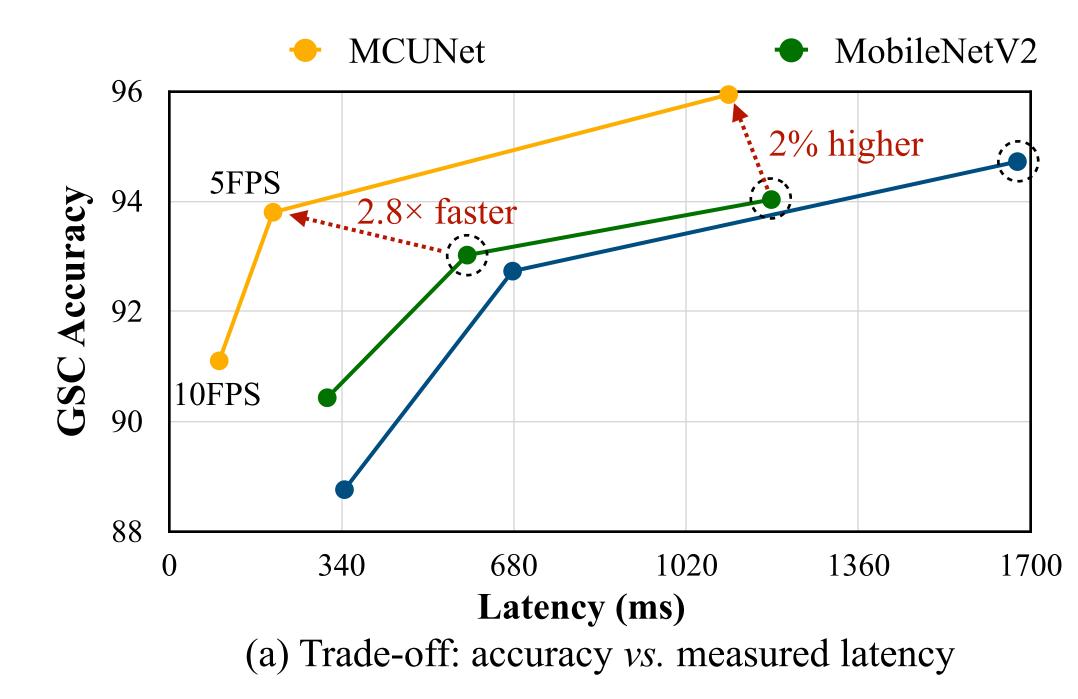


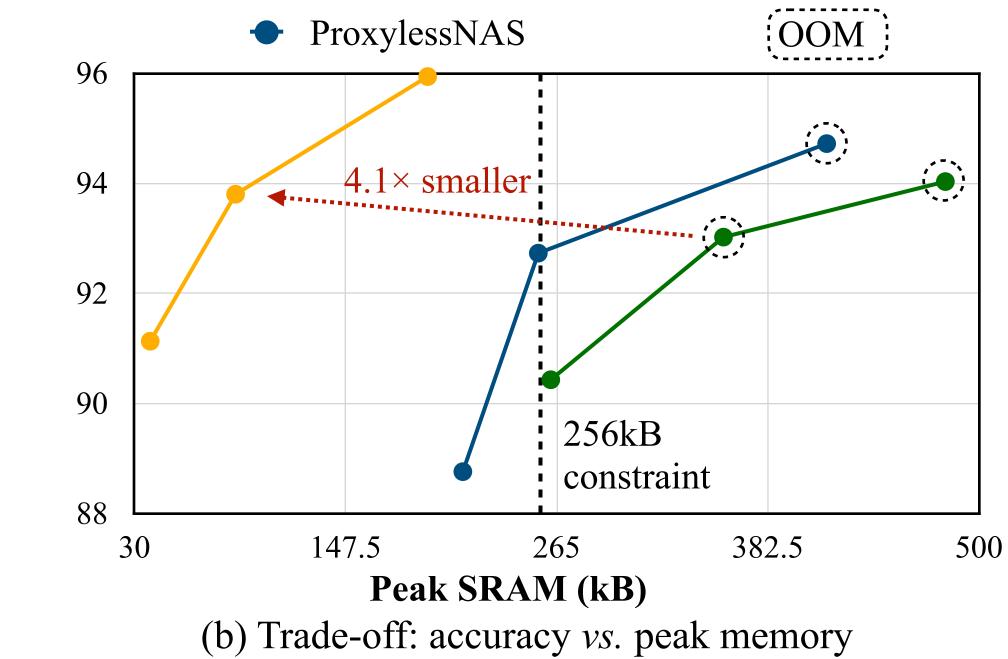
Visual Wake Words (VWW)



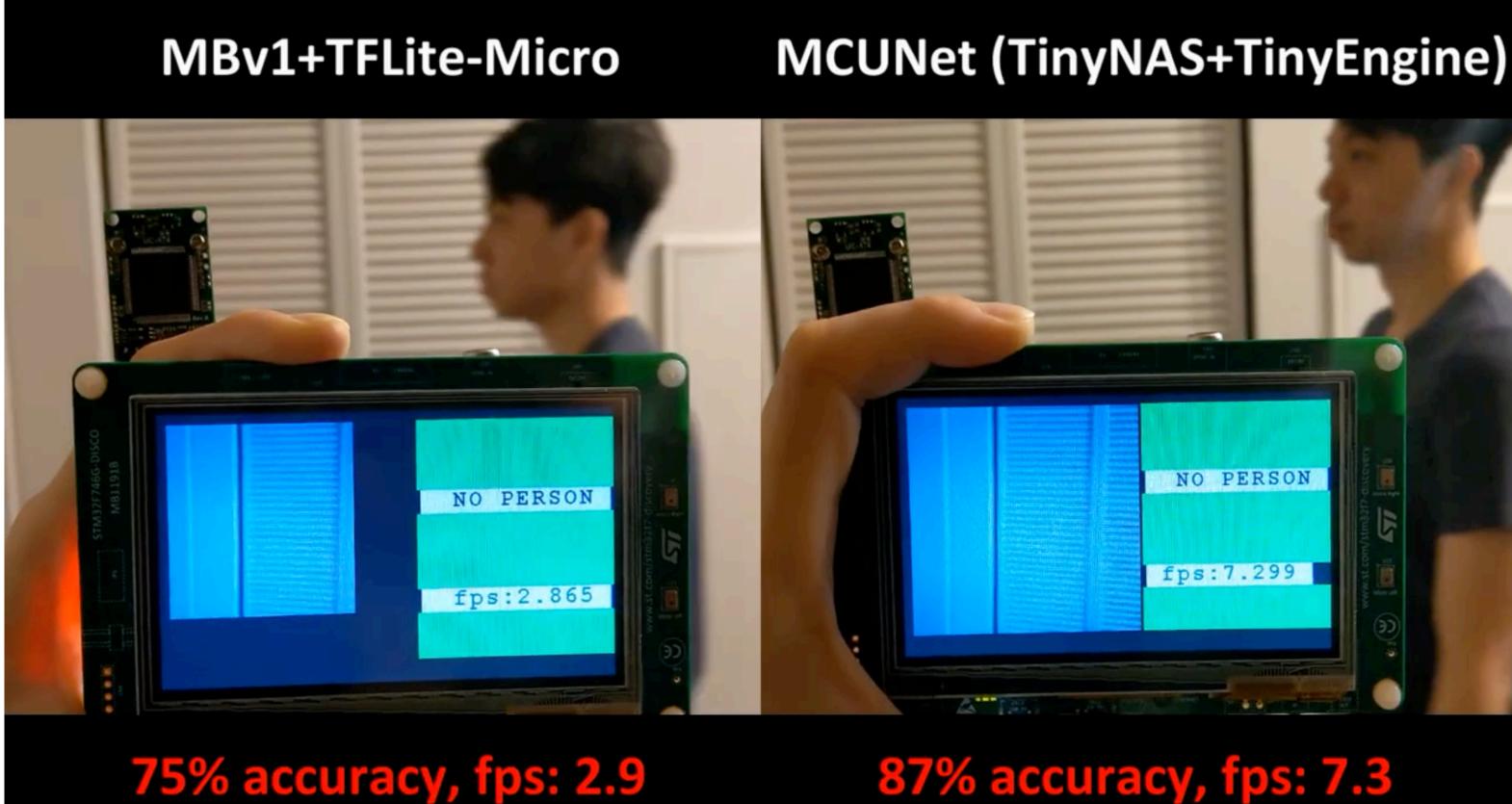


Audio Wake Words (Speech Commands)



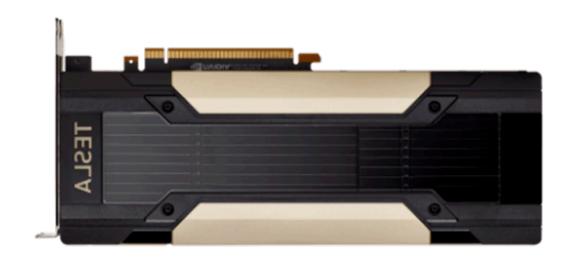


• Detecting whether a person is present in the frame



87% accuracy, fps: 7.3

MCUNet: Tiny Deep Learning on IoT Devices



Cloud Al

<u>ResNet</u>

• Our study suggests that the era of tiny machine learning on IoT devices has arrived

Project Page: http://tinyml.mit.edu

