
1MIT 2National Taiwan University 3MIT-IBM Watson AI Lab

MCUNet: Tiny Deep Learning
on IoT Devices

NeurIPS 2020 (spotlight)

Ji Lin1 Wei-Ming Chen1,2 John Cohn3Yujun Lin1 Song Han1Chuang Gan3

• Low-cost, low-power

Background: The Era of AIoT on Microcontrollers (MCUs)

Background: The Era of AIoT on Microcontrollers (MCUs)

• Low-cost, low-power • Rapid growth

#U
ni

ts
 (B

illi
on

)

0
10
20
30
40
50

12 13 14 15F 16F 17F 18F 19F

Smart Retail Personalized Healthcare Precision Agriculture Smart Home

…

• Wide applications

• Low-cost, low-power • Rapid growth

#U
ni

ts
 (B

illi
on

)

0
10
20
30
40
50

12 13 14 15F 16F 17F 18F 19F

Background: The Era of AIoT on Microcontrollers (MCUs)

Challenge: Memory Too Small to Hold DNN

Memory (Activation)

Storage (Weights)

Cloud AI

Challenge: Memory Too Small to Hold DNN

Memory (Activation)

Storage (Weights)

16GB

~TB/PB

Cloud AI Mobile AI

Challenge: Memory Too Small to Hold DNN

Memory (Activation)

Storage (Weights)

16GB 4GB

256GB~TB/PB

Cloud AI Mobile AI Tiny AI

Challenge: Memory Too Small to Hold DNN

Memory (Activation)

Storage (Weights)

16GB 4GB

256GB

320kB

1MB~TB/PB

Cloud AI Mobile AI Tiny AI

Challenge: Memory Too Small to Hold DNN

Memory (Activation)

Storage (Weights)

16GB

~TB/PB

4GB

256GB

320kB

1MB13,000x
smaller

50,000x
smaller

Cloud AI Mobile AI Tiny AI

Challenge: Memory Too Small to Hold DNN

Memory (Activation)

Storage (Weights)

16GB

~TB/PB

4GB

256GB

320kB

1MB13,000x
smaller

50,000x
smaller

We need to reduce the peak activation size
AND the model size to fit a DNN into MCUs.

Existing efficient network only reduces model size
but NOT activation size!

0

10

20

30

40

50

Param (MB) Peak Activation (MB)

ResNet-18 MobileNetV2-0.75 MCUNet

~70% ImageNet Top-1

4.6x

1.8x

Challenge: Memory Too Small to Hold DNN

ResNet-50

MobileNetV2

MobileNetV2 (int8)

0 2000 4000 6000 8000320kB
constraint

Peak Memory (kB)

22x

23x

5x

Challenge: Memory Too Small to Hold DNN

ResNet-50

MobileNetV2

MobileNetV2 (int8)

0 2000 4000 6000 8000320kB
constraint

Peak Memory (kB)

22x

23x

5x

Challenge: Memory Too Small to Hold DNN

MCUNet

ResNet-50

MobileNetV2

MobileNetV2 (int8)

0 2000 4000 6000 8000320kB
constraint

Peak Memory (kB)

22x

23x

5x

MCUNet: System-Algorithm Co-design

MCUNet: System-Algorithm Co-design

(a) Search NN model on an existing library

e.g., ProxylessNAS, MnasNet

LibraryNAS

MCUNet: System-Algorithm Co-design

(a) Search NN model on an existing library

e.g., ProxylessNAS, MnasNet

(b) Tune deep learning library given a NN model

e.g., TVM

LibraryNAS LibraryNN Model

MCUNet: System-Algorithm Co-design

TinyEngineTinyNAS

Efficient Compiler / Runtime

Efficient Neural Architecture

LibraryNN Model

(a) Search NN model on an existing library

e.g., ProxylessNAS, MnasNet

(b) Tune deep learning library given a NN model

e.g., TVM

(c) MCUNet: system-algorithm co-design

MCUNet

LibraryNAS

MCUNet: System-Algorithm Co-design

TinyEngineTinyNAS

Efficient Compiler / Runtime

Efficient Neural Architecture

LibraryNN Model

(a) Search NN model on an existing library

e.g., ProxylessNAS, MnasNet

(b) Tune deep learning library given a NN model

e.g., TVM

(c) MCUNet: system-algorithm co-design

MCUNet

LibraryNAS

TinyNAS

TinyNAS: Two-Stage NAS for Tiny Memory Constraints

Search space design is crucial for NAS performance

There is no prior expertise on MCU model design

Full Network Space

TinyNAS: Two-Stage NAS for Tiny Memory Constraints

Search space design is crucial for NAS performance

There is no prior expertise on MCU model design

Optimized Search SpaceFull Network Space

Memory/Storage
Constraints

TinyNAS: Two-Stage NAS for Tiny Memory Constraints

Search space design is crucial for NAS performance

There is no prior expertise on MCU model design

Optimized Search SpaceFull Network Space Model Specialization

Memory/Storage
Constraints

Revisit ProxylessNAS search space:

S = kernel size × expansion ratio × depth

TinyNAS: (1) Automated search space optimization

Revisit ProxylessNAS search space:

S = kernel size × expansion ratio × depth

k=7

k=5

k=3

TinyNAS: (1) Automated search space optimization

Revisit ProxylessNAS search space:

S = kernel size × expansion ratio × depth

k=7

k=5

k=3

e=6

e=4

e=2

pw1
dw

pw2

TinyNAS: (1) Automated search space optimization

Revisit ProxylessNAS search space:

S = kernel size × expansion ratio × depth

k=7

k=5

k=3

e=6

e=4

e=2

pw1
dw

pw2

d=4

d=3

d=2

TinyNAS: (1) Automated search space optimization

Revisit ProxylessNAS search space:

S = kernel size × expansion ratio × depth

Out of memory!

TinyNAS: (1) Automated search space optimization

Extended search space to cover wide range of hardware capacity:

S’ = kernel size × expansion ratio × depth × input resolution R × width multiplier W

TinyNAS: (1) Automated search space optimization

Different R and W for different hardware capacity

R=224, W=1.0

TinyNAS: (1) Automated search space optimization

(i.e., different optimized sub-space)

Extended search space to cover wide range of hardware capacity:

S’ = kernel size × expansion ratio × depth × input resolution R × width multiplier W

Different R and W for different hardware capacity

R=260, W=1.4 * R=224, W=1.0

TinyNAS: (1) Automated search space optimization

(i.e., different optimized sub-space)

Extended search space to cover wide range of hardware capacity:

S’ = kernel size × expansion ratio × depth × input resolution R × width multiplier W

* Cai et al., Once-for-All: Train One Network and Specialize it for Efficient Deployment, ICLR’20

Different R and W for different hardware capacity

R=260, W=1.4 R=224, W=1.0 R=?, W=?

F412/F743/H746/…

TinyNAS: (1) Automated search space optimization

(i.e., different optimized sub-space)

Extended search space to cover wide range of hardware capacity:

S’ = kernel size × expansion ratio × depth × input resolution R × width multiplier W

256kB/320kB/512kB/…

Analyzing FLOPs distribution of satisfying models in each search space:

Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy

TinyNAS: (1) Automated search space optimization

0%

25%

50%

75%

100%

25 30 35 40 45 50 55 60 65

w0.3-r160 | 32.5
w0.4-r144 | 46.9

FLOPs (M)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

width-res. | mFLOPs

TinyNAS: (1) Automated search space optimization

Analyzing FLOPs distribution of satisfying models in each search space:

Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy

320kB?

0%

25%

50%

75%

100%

25 30 35 40 45 50 55 60 65

w0.3-r160 | 32.5
w0.4-r144 | 46.9

FLOPs (M)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

width-res. | mFLOPs

TinyNAS: (1) Automated search space optimization

Analyzing FLOPs distribution of satisfying models in each search space:

Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy

0%

25%

50%

75%

100%

25 30 35 40 45 50 55 60 65

w0.3-r160 | 32.5
w0.4-r144 | 46.9
p0.8

FLOPs (M)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty p=80%(32.3M, 80%)

width-res. | mFLOPs

Bad design space
(45.4M, 80%)

TinyNAS: (1) Automated search space optimization

Analyzing FLOPs distribution of satisfying models in each search space:

Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy

0%

25%

50%

75%

100%

25 30 35 40 45 50 55 60 65

w0.3-r160 | 32.5
w0.4-r144 | 46.9
p0.8

FLOPs (M)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty p=80%(32.3M, 80%)

be
st

ac
c:

76
.4%

width-res. | mFLOPs

Bad design space

be
st

ac
c:

74
.2

%

(45.4M, 80%)

TinyNAS: (1) Automated search space optimization

Analyzing FLOPs distribution of satisfying models in each search space:

Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy

0%

25%

50%

75%

100%

25 30 35 40 45 50 55 60 65

w0.3-r160 | 32.5
w0.4-r112 | 32.4
w0.4-r128 | 39.3
w0.4-r144 | 46.9
w0.5-r112 | 38.3
w0.5-r128 | 46.9
w0.5-r144 | 52.0
w0.6-r112 | 41.3
w0.7-r96 | 31.4
w0.7-r112 | 38.4
p0.8

FLOPs (M)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty p=80%(50.3M, 80%)(32.3M, 80%)

be
st

ac
c:

76
.4%

width-res. | mFLOPs

Good design space: likely to achieve
high FLOPs under memory constraint

Bad design space

be
st

ac
c:

78
.7%

be
st

ac
c:

74
.2

%

TinyNAS: (1) Automated search space optimization

Analyzing FLOPs distribution of satisfying models in each search space:

Larger FLOPs -> Larger model capacity -> More likely to give higher accuracy

TinyNAS: (2) Resource-constrained model specialization

Random sample
(kernel size,

expansion, depth)

Jointly fine-tune
multiple sub-

networks

Super Network

• Small sub-networks are nested in large sub-networks.

• One-shot NAS through weight sharing

* Cai et al., Once-for-All: Train One Network and Specialize it for Efficient Deployment, ICLR’20

TinyNAS: (2) Resource-constrained model specialization

Random sample
(kernel size,

expansion, depth)

Jointly fine-tune
multiple sub-

networks

Super Network

…

Directly evaluate the
accuracy of sub-nets

• One-shot NAS through weight sharing

TinyNAS: (2) Resource-constrained model specialization

40

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

TinyNAS: (2) Resource-constrained model specialization

41

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

7x7

Index
central

5x5

Index
central

3x3

Start with full kernel size
Smaller kernel takes centered weights

TinyNAS: (2) Resource-constrained model specialization

42

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

unit i

train with full depth

unit i

shrink the depth

O1

O2

O3

Allow later layers in each unit
to be skipped to reduce the depth

TinyNAS: (2) Resource-constrained model specialization

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

train with full width

channel
importance

0.02

0.15

0.85

0.63

channel
sorting

reorg.

shrink the width
O1

O2

O3

O1

Shrink the width
Keep the most important channels when shrinking via channel sorting

TinyNAS Better Utilizes the Memory

Pe
ak

 M
em

 (k
B)

0

75

150

225

300

MobileNetV2 TinyNAS

Peak Memory for First Two Stages

TinyNAS Better Utilizes the Memory

Pe
ak

 M
em

 (k
B)

0

75

150

225

300

average
average

MobileNetV2 TinyNAS

• TinyNAS designs networks with more uniform peak memory for each block,
allowing us to fit a larger model at the same amount of memory

Peak Memory for First Two Stages

2.2x 1.6x
maxmax

TinyEngine: A Memory-Efficient Inference Library

1. Reducing overhead with separated compilation & runtime

(a) Existing libraries based on runtime interpretation

e.g., TF-Lite Micro, CMSIS-NN

NN Model
All Supported ops

Inference

Runtime

Meta info. &
Memory allocation

Interprete

TinyEngine: A Memory-Efficient Inference Library

(a) Existing libraries based on runtime interpretation

e.g., TF-Lite Micro, CMSIS-NN

NN Model
All Supported ops

Inference

Runtime

Meta info. &
Memory allocation

Interprete

Computation
overhead

1. Reducing overhead with separated compilation & runtime

TinyEngine: A Memory-Efficient Inference Library

(a) Existing libraries based on runtime interpretation

e.g., TF-Lite Micro, CMSIS-NN

NN Model
All Supported ops

Inference

Runtime

Meta info. &
Memory allocation

Interprete

Computation
overhead

Storage
overhead

1. Reducing overhead with separated compilation & runtime

TinyEngine: A Memory-Efficient Inference Library

(a) Existing libraries based on runtime interpretation

e.g., TF-Lite Micro, CMSIS-NN

NN Model
All Supported ops

Inference

Runtime

Meta info. &
Memory allocation

Interprete

Computation
overhead

Memory
overhead

Storage
overhead

1. Reducing overhead with separated compilation & runtime

TinyEngine: A Memory-Efficient Inference Library

(b) TinyEngine: Model-adaptive code generation.

NN Model
Specialized ops

Inference

Compile time (offline) Runtime

Memory schedule

(a) Existing libraries based on runtime interpretation

e.g., TF-Lite Micro, CMSIS-NN

NN Model
All Supported ops

Inference

Runtime

Meta info. &
Memory allocation

Interprete

Computation
overhead

Memory
overhead

Storage
overhead

1. Reducing overhead with separated compilation & runtime

TinyEngine: A Memory-Efficient Inference Library

(b) TinyEngine: Model-adaptive code generation.

NN Model
Specialized ops

Inference

Compile time (offline) Runtime

Memory schedule

Code generation

Peak Mem (KB) ↓
0 7648

Baseline: ARM CMSIS-NN

160

1.7x smaller

1. Reducing overhead with separated compilation & runtime

TinyEngine: A Memory-Efficient Inference Library

2. In-place depth-wise convolution

The dilemma of inverted bottleneck 1x

peak mem 6x

1x

TinyEngine: A Memory-Efficient Inference Library

2. In-place depth-wise convolution

The dilemma of inverted bottleneck 1x

peak mem 6x

1x

Peak Memory: 2N

channels

(a) Depth-wise convolution (b) In-place depth-wise convolution

Input activation Output activation Input/output activation Temp buffer

2
1

n
n-1

1

2

n

write back

(Peak Mem: 2n) (Peak Mem: n+1)

N-1
N

TinyEngine: A Memory-Efficient Inference Library

2. In-place depth-wise convolution

The dilemma of inverted bottleneck 1x

peak mem 6x

1x

Peak Memory: 2N

channels

(a) Depth-wise convolution (b) In-place depth-wise convolution

Input activation Output activation Input/output activation Temp buffer

2
1

n
n-1

1

2

n

write back

(Peak Mem: 2n) (Peak Mem: n+1)

N-1
N

channels

(a) Depth-wise convolution (b) In-place depth-wise convolution

Input activation Output activation Input/output activation Temp buffer

2
1

n
n-1

1

2

n

write back

(Peak Mem: 2n) (Peak Mem: n+1)

N

Peak Memory: N+1

TinyEngine: A Memory-Efficient Inference Library

2. In-place depth-wise convolution

The dilemma of inverted bottleneck 1x

peak mem 6x

1x

Code generation

Peak Mem (KB) ↓
0 7648

Baseline: ARM CMSIS-NN

160

3.4x smaller
In-place depth-wise

Peak Memory: 2N

channels

(a) Depth-wise convolution (b) In-place depth-wise convolution

Input activation Output activation Input/output activation Temp buffer

2
1

n
n-1

1

2

n

write back

(Peak Mem: 2n) (Peak Mem: n+1)

N-1
N

channels

(a) Depth-wise convolution (b) In-place depth-wise convolution

Input activation Output activation Input/output activation Temp buffer

2
1

n
n-1

1

2

n

write back

(Peak Mem: 2n) (Peak Mem: n+1)

N

Peak Memory: N+1

TinyEngine: Faster Inference Speed

Baseline: ARM CMSIS-NN
Million MAC/s ↑

0 52

Analyzing Million MAC/s improved by each technique

Baseline: ARM CMSIS-NN Code generation: Eliminate runtime interpretation overhead
Million MAC/s ↑

0 6452

(1) Code generator-based compilation -> Eliminate overheads of runtime interpretation
Analyzing Million MAC/s improved by each technique

OOM

NN Model
Specialized ops

Inference

 TinyEngine: Model-adaptive code generation.

Compile time Runtime

Memory schedule

TinyEngine: Faster Inference Speed

OOM

Baseline: ARM CMSIS-NN Code generation Specialized Im2col: Increase the data reuse
Million MAC/s ↑

0 64 7052

(a) Model-level memory scheduling

(b) Tile size configuration for Im2col

(2) Model-adaptive memory scheduling -> Increase data reuse for each layer
Analyzing Million MAC/s improved by each technique

TinyEngine: Faster Inference Speed

OOM

Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion
Million MAC/s ↑

0 64 7052 75

(3) Computation Kernel Specialization: Operation fusion

• Minimize memory footprint

• Optimize the overall computation

Pad

Conv

ReLU

BN

Specialized kernel

 e.g., fuse Pad+Conv+ReLU+BN

Analyzing Million MAC/s improved by each technique

TinyEngine: Faster Inference Speed

OOM

Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion Loop unrolling
Million MAC/s ↑

0 64 7052 75 79 82

(3) Computation Kernel Specialization: Loop unrolling

e.g., fully unroll for

3x3 conv

...

• Eliminate the branch instruction overheads of loops

Analyzing Million MAC/s improved by each technique

TinyEngine: Faster Inference Speed

Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion Loop unrolling Tiling
Million MAC/s ↑

0 64 7052 75 79 82

Specialized loop unrolling/tiling
according to network architecture

Analyzing Million MAC/s improved by each technique
(3) Computation Kernel Specialization: Loop tiling for each layer

Im2col buffer

x

Weights

...

Tile size

Output

Tile size

• Tiling loops based on the kernel size and available memory

TinyEngine: Faster Inference Speed

TinyEngine: A Memory-Efficient Inference Library

Code generation

Peak Mem (KB) ↓
0 7648

Baseline: ARM CMSIS-NN

160

3.4x smaller
In-place depth-wise

Million MAC/s ↑

1.6x faster
Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion Loop unrolling Tiling

Million MAC/s ↑
0 64 7052 75 79 82

adsfas

TinyEngine: A Memory-Efficient Inference Library

Code generation

Peak Mem (KB) ↓
0 7648

Baseline: ARM CMSIS-NN

160

3.4x smaller
In-place depth-wise

Million MAC/s ↑

Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion Loop unrolling Tiling

0 64 7052 75 79 82

1.6x faster

0%

25%

50%

75%

100% 1.001.001.001.00

0.61
0.660.64

0.94

0.82

0.320.330.320.33

TF-Lite Micro MicroTVM Tuned CMSIS-NN TinyEngine

SmallCifar MobileNetV2 ProxylessNAS MnasNet

Normalized Speed↑

1.6x

faster

3x  
faster

3x  
faster

3x  
faster

3x  
faster

1.5x

faster

1.6x

faster

O
O

M

O
O

M

O
O

M

Peak Mem (KB)↓

0

46

92

138

184

230

84

41
65

46

228

197
217

67

144

216

161

211

64

SmallCifar MobileNetV2 ProxylessNAS MnasNet

3.1x  
smaller

4.8x  
smaller

O
O

M

2.7x  
smaller3.3x  

smaller

O
O

M

O
O

M

• Consistent improvement on different networks

TinyEngine: A Memory-Efficient Inference Library

Code generation

Peak Mem (KB) ↓
0 7648

Baseline: ARM CMSIS-NN

160

3.4x smaller
In-place depth-wise

Million MAC/s ↑

Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion Loop unrolling Tiling

0 64 7052 75 79 82

1.6x faster

0%

25%

50%

75%

100% 1.001.001.001.00

0.61
0.660.64

0.94

0.82

0.320.330.320.33

TF-Lite Micro MicroTVM Tuned CMSIS-NN TinyEngine

SmallCifar MobileNetV2 ProxylessNAS MnasNet

Normalized Speed↑

1.6x

faster

3x  
faster

3x  
faster

3x  
faster

3x  
faster

1.5x

faster

1.6x

faster

O
O

M

O
O

M

O
O

M

Peak Mem (KB)↓

0

46

92

138

184

230

84

41
65

46

228

197
217

67

144

216

161

211

64

SmallCifar MobileNetV2 ProxylessNAS MnasNet

3.1x  
smaller

4.8x  
smaller

O
O

M

2.7x  
smaller3.3x  

smaller

O
O

M

O
O

M

• Consistent improvement on different networks

Experimental Results

We focus on large-scale datasets to reflect real-life use cases.

Datasets:
(1) ImageNet-1000

(2) Wake Words

• Visual: Visual Wake Words

• Audio: Google Speech Commands

System-Algorithm Co-design Gives the Best Results

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)

40Baseline (MbV2*+CMSIS)

ImageNet Top1: 35% 45% 55% 65%

* scaled down version: width multiplier 0.3, input resolution 80

56
44

40Baseline (MbV2*+CMSIS)

System-only (MbV2*+TinyEngine)

Model-only (TinyNAS+CMSIS)

ImageNet Top1: 35% 45% 55% 65%

System-Algorithm Co-design Gives the Best Results

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)

* scaled down version: width multiplier 0.3, input resolution 80

62
56

44
40Baseline (MbV2*+CMSIS)

System-only (MbV2*+TinyEngine)

Model-only (TinyNAS+CMSIS)

Co-design (TinyNAS+TinyEngine)

ImageNet Top1: 35% 45% 55% 65%

System-Algorithm Co-design Gives the Best Results

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)

* scaled down version: width multiplier 0.3, input resolution 80

Handling Diverse Hardware

50

55

60

65

70

75
70.7

65.9
63.562.0

ImageNet Top-1 Accuracy (%)

STM32F412

(256kB/1MB)

STM32F746

(320kB/1MB)

STM32F765

(512kB/1MB)

STM32H743

(512kB/2MB)

• Specializing models (int4) for different MCUs (SRAM/Flash)

Handling Diverse Hardware

50

55

60

65

70

75
70.7

65.9
63.562.0

ImageNet Top-1 Accuracy (%)

STM32F412

(256kB/1MB)

STM32F746

(320kB/1MB)

STM32F765

(512kB/1MB)

STM32H743

(512kB/2MB)

• Specializing models (int4) for different MCUs (SRAM/Flash)

The first to achieve >70%
ImageNet accuracy on
commercial MCUs

Handling Diverse Hardware

50

55

60

65

70

75

53.8

70.7

65.9
63.562.0

ImageNet Top-1 Accuracy (%)

STM32F412

(256kB/1MB)

STM32F746

(320kB/1MB)

STM32F765

(512kB/1MB)

STM32H743

(512kB/2MB)

• Specializing models (int4) for different MCUs (SRAM/Flash)

The first to achieve >70%
ImageNet accuracy on
commercial MCUs

MobileNetV2+CMSIS-NN

+17%

0

10

20

30

40

50

Param (MB) Peak Activation (MB)

ResNet-18 MobileNetV2-0.75 MCUNet
~70% ImageNet Top-1

4.6x

1.8x

Reduce Both Model Size and Activation Size

Reduce Both Model Size and Activation Size

0

10

20

30

40

50

Param (MB) Peak Activation (MB)

ResNet-18 MobileNetV2-0.75 MCUNet

24.6x

13.8x

~70% ImageNet Top-1

Visual Wake Words (VWW)
V

W
W

 A
cc

ur
ac

y

84

86

88

90

92

0 440 880 1320 1760 2200

MCUNet MobileNetV2 ProxylessNAS Han et al.

84

86

88

90

92

50 162.5 275 387.5 500

OOM

Latency (ms) Peak SRAM (kB)
(a) Trade-off: accuracy vs. measured latency (b) Trade-off: accuracy vs. peak memory

256kB constraint on
MCU

Visual Wake Words (VWW)
V

W
W

 A
cc

ur
ac

y

84

86

88

90

92

0 440 880 1320 1760 2200

MCUNet MobileNetV2 ProxylessNAS Han et al.

84

86

88

90

92

50 162.5 275 387.5 500

10FPS

5FPS

OOM

Latency (ms) Peak SRAM (kB)
(a) Trade-off: accuracy vs. measured latency (b) Trade-off: accuracy vs. peak memory

256kB constraint on
MCU

Visual Wake Words (VWW)
V

W
W

 A
cc

ur
ac

y

84

86

88

90

92

0 440 880 1320 1760 2200

MCUNet MobileNetV2 ProxylessNAS Han et al.

84

86

88

90

92

50 162.5 275 387.5 500

10FPS

5FPS

OOM

Latency (ms) Peak SRAM (kB)

3.4× faster

3.7× smaller

2.4× faster

(a) Trade-off: accuracy vs. measured latency (b) Trade-off: accuracy vs. peak memory

256kB constraint on
MCU

Audio Wake Words (Speech Commands)
G

SC
 A

cc
ur

ac
y

88

90

92

94

96

0 340 680 1020 1360 1700

MCUNet MobileNetV2 ProxylessNAS

88

90

92

94

96

30 147.5 265 382.5 500

10FPS

5FPS
2.8× faster 4.1× smaller

2% higher

256kB
constraint

Latency (ms) Peak SRAM (kB)
(a) Trade-off: accuracy vs. measured latency (b) Trade-off: accuracy vs. peak memory

OOM

Visual Wake Word Detection

• Detecting whether a person is present in the frame

MCUNet: Tiny Deep Learning on IoT Devices

Project Page: http://tinyml.mit.edu

• Our study suggests that the era of tiny machine learning on IoT devices has arrived

Cloud AI Mobile AI Tiny AI

ResNet MobileNet MCUNet

