
DEC 5 - 9, 2021 San Francisco, California

NAAS: Neural Accelerator Architecture Search

Yujun Lin, Mengtian Yang, Song Han

MIT

Bio

Yujun Lin is a Ph.D. student at MIT EECS,
advised by Profesor Song Han. He received
his M.S. degree from MIT in 2020 and
B.Eng degree from Tsinghua University in
2018.
His research focuses on the intersection of
efficient deep learning and accelerator
architecture design.

Accelerating Deep Learning Computing

• Both neural architecture and accelerator
architecture design are important to
enable specialization and acceleration

1x1 Conv

3x3 Conv

1x1 Conv

Neural Architecture Accelerator Architecture

Data Driven Approach is Desirable
• Given the huge design space, data-driven approach is

desirable, where new architecture design evolves as new
designs and rewards are collected

• Hardware-aware Neural Architecture Search (NAS) and auto
compiler optimization (e.g., autoTVM)

• Only focus on off-the-shelf hardware
• Neglect the freedom in the hardware design space

Design Spaces

Key Dimensions

Accelerator
Local Buffer Size, Global Buffer Size, #PEs

Compute Array Size, PE Connectivity

Compiler Loop Orders, Loop Tiling Size, Dataflow

Neural
Network

#Layers, #Channels, Kernel Size, Bypass

(Input / Weight) Quantization Precision

Design spaces are tightly entangled
• Correlation between design spaces is complicated, and varies

from accelerator to accelerator

Accelerator
Parameter

Space

Neural Architecture Search Space

In
Channels

Out
Channels

Kernel
Size

Feature
Map Size

Array #rows

Array #cols

IBUF size

WBUF size

OBUF size

EyerissNVDLA

Joint Search Accelerator and Neural Network
• Searching accelerator and neural architecture in one

optimization loop offers highly matched solutions

Accelerator

NN Model

Accelerator Architecture
Search

Neural Architecture
Search

Architecture Design Spaces

Key Dimensions

Accelerator
Local Buffer Size, Global Buffer Size, #PEs

Compute Array Size, PE Connectivity

Compiler Loop Orders, Loop Tiling Size, Dataflow

Neural
Network

#Layers, #Channels, Kernel Size, Bypass

(Input / Weight) Quantization Precision

Architectural Sizing

Connectivity Parameters

Architecture Design Spaces

Key Dimensions

Accelerator
Local Buffer Size, Global Buffer Size, #PEs

Compute Array Size, PE Connectivity

Compiler Loop Orders, Loop Tiling Size, Dataflow

Neural
Network

#Layers, #Channels, Kernel Size, Bypass

(Input / Weight) Quantization Precision

Architectural Sizing

Connectivity Parameters

How to embed these design dimensions for searching?

Convolution Loop Nests
• Convolution loop nests can be divided into two parts:

temporal mapping and spatial parallelism

Tensor Dimension Notation

Batch N

Output Channel K

Input Channel C

Input Row (Output Row) Y (Y’)

Input Column (Output Column) X (X’)

Kernel Row R

Kernel Column S

Loop Tiling

Loop Order

Hardware Parallelism

For _R in range(R / R):
For _S in range(S / S):
For _C in range(C / T_C):
For _Y’ in range(Y’ / T_Y’):
For _X’ in range(X’ / T_X’):
For r in range(R):
For s in range(S):
For _k in range(K / 16):
For _y’ in range(T_Y’):
For _x’ in range(T_X’):
For _c in range(T_C / 16):
Parallel-For _m in range(16):
Parallel-For _n in range(16):

c = _C * T_C + _c * 16;
k = _k * 16;
y’ = _Y’ * T_Y’ + _y’;
x’ = _X’ * T_X’ + _x’;
y = y’ + r - R;
x = x’ + s - S;
psum[b,k,y’,x’] += acts[b,x,y,x]

* wgts[k,c,y,x];

Mapping

HW

From Computation Loops To Hardware
• Spatial parallelism determines the PE connectivity

• e.g., C (in channels) indicates reduction of partial sum registers
• e.g., K (out channels) indicates forward of input feature registers

Shared Buffer (L2 Scratch Pad)

Network-On-Chip (NoC)

Fe
at

ur
e

M
ap

Partial Sum

C15 Private Buffer
(L1 Scratch Pad)
ALU (MAC Unit)

Forward Re
du

ct
io

n

To/From DRAM

K0 K1 K15

C1

C0

…

…

…

………

Hardware
Design

For _R in range(R / R):
For _S in range(S / S):
For _C in range(C / T_C):
For _Y’ in range(Y’ / T_Y’):
For _X’ in range(X’ / T_X’):
For r in range(R):
For s in range(S):
For _k in range(K / 16):
For _y’ in range(T_Y’):
For _x’ in range(T_X’):
For _c in range(T_C / 16):
Parallel-For _m in range(16):
Parallel-For _n in range(16):

c = _C * T_C + _c * 16;
k = _k * 16;
y’ = _Y’ * T_Y’ + _y’;
x’ = _X’ * T_X’ + _x’;
y = y’ + r - R;
x = x’ + s - S;
psum[b,k,y’,x’] += acts[b,x,y,x]

* wgts[k,c,y,x];

Mapping

HW

Encoding Accelerator and Mappings

L2 Buffer Size

L1 Buffer Size

Number of PEs

Bandwidth

Architectural Sizing

#Array Dimension

Array Dim. Sizes
PE Connection

(Parallel Dim)

Connectivity Parameters

Hardware Description For _R in range(R / R):
For _S in range(S / S):
For _C in range(C / T_C):
For _Y’ in range(Y’ / T_Y’):
For _X’ in range(X’ / T_X’):
For r in range(R):
For s in range(S):
For _k in range(K / 16):
For _y’ in range(T_Y’):
For _x’ in range(T_X’):
For _c in range(T_C / 16):
Parallel-For _m in range(16):
Parallel-For _n in range(16):

c = _C * T_C + _c * 16;
k = _k * 16;
y’ = _Y’ * T_Y’ + _y’;
x’ = _X’ * T_X’ + _x’;
y = y’ + r - R;
x = x’ + s - S;
psum[b,k,y’,x’] += acts[b,x,y,x]

* wgts[k,c,y,x];

Shared Buffer (L2 Scratch Pad)

Network-On-Chip (NoC)

Fe
at

ur
e

M
ap

Partial Sum

C15 Private Buffer
(L1 Scratch Pad)
ALU (MAC Unit)

Forward Re
du

ct
io

n

To/From DRAM

K0 K1 K15

C1

C0

…

…

…

………

Hardware
Design

Hardware Encoding Vector

Mapping Encoding Vector

Architectural Sizing Connectivity Parameters
L2

Buffer Size
L1

Buffer Size #PEs Band-
width #Dim Dim

Sizes
Parallel

Dims

Array Level PE Level

Loop OrdersTiling SizesLoop Orders

Neural Accelerator Architecture Search

Mapping
Population

Accelerator
PopulationSample Best

Architecture

Select
Best Fits:
Low EDP

Best
Mapping

Update
Sample Distribution Select

Best Fits:
Low EDP

Update
Sample Distribution

Evolution
Evolution

For oh:
For ic:

For kw:
For ow:

HW
Desc.

Hardware
Evaluation

Environment

Benchmarks

For kw:
For ic:

For kh:
For ow:For oc:

For ic:
For oh:

For ow:
Sample

Mapping
Search Space

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

EDP

Decode

Decode

Neural Accelerator Architecture Search

Accelerator
PopulationSample

Hardware
Evaluation

Environment

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

Accelerator Architecture Search
1. Random sample accelerator

candidates based on
multivariate normal
distribution 𝑁𝑁(𝜇𝜇𝐴𝐴,𝜎𝜎𝐴𝐴, Σ𝐴𝐴)

Neural Accelerator Architecture Search

Accelerator
PopulationSample

Hardware
Evaluation

Environment

Benchmarks

Mapping
Search Space

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

Compiler Mapping Search
1. Determine mapping space

for each accelerator
candidates from NN
benchmarks

Neural Accelerator Architecture Search

Mapping
Population

Accelerator
PopulationSample

For oh:
For ic:

For kw:
For ow:

Hardware
Evaluation

Environment

Benchmarks

For kw:
For ic:

For kh:
For ow:For oc:

For ic:
For oh:

For ow:
Sample

Mapping
Search Space

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

Compiler Mapping Search
2. Random sample mapping

candidates based on
multivariate normal
distribution 𝑁𝑁(𝜇𝜇𝑀𝑀,𝜎𝜎𝑀𝑀, Σ𝑀𝑀)

Neural Accelerator Architecture Search

Mapping
Population

Accelerator
PopulationSample

For oh:
For ic:

For kw:
For ow:

HW
Desc.

Hardware
Evaluation

Environment

Benchmarks

For kw:
For ic:

For kh:
For ow:For oc:

For ic:
For oh:

For ow:
Sample

Mapping
Search Space

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

EDP

Decode

Decode

Compiler Mapping Search
3. Decode encoding vectors to

hardware description;
4. Evaluate Energy-Delay-

Product (EDP) for each pair
of accelerator candidate
and its mapping candidate

Neural Accelerator Architecture Search

Mapping
Population

Accelerator
PopulationSample

Select
Best Fits:
Low EDP

Evolution

For oh:
For ic:

For kw:
For ow:

HW
Desc.

Hardware
Evaluation

Environment

Benchmarks

For kw:
For ic:

For kh:
For ow:For oc:

For ic:
For oh:

For ow:
Sample

Mapping
Search Space

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

EDP

Decode

Decode

Compiler Mapping Search
5. Select best fits with lowest

EDP

Neural Accelerator Architecture Search

Mapping
Population

Accelerator
PopulationSample

Update
Sample Distribution Select

Best Fits:
Low EDP

Evolution

For oh:
For ic:

For kw:
For ow:

HW
Desc.

Hardware
Evaluation

Environment

Benchmarks

For kw:
For ic:

For kh:
For ow:For oc:

For ic:
For oh:

For ow:
Sample

Mapping
Search Space

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

EDP

Decode

Decode

Compiler Mapping Search
5. Update 𝜇𝜇𝑀𝑀,𝜎𝜎𝑀𝑀, Σ𝑀𝑀 to

increase the likelihood
around best fits

Neural Accelerator Architecture Search

Mapping
Population

Accelerator
PopulationSample

Update
Sample Distribution Select

Best Fits:
Low EDP

Evolution

For oh:
For ic:

For kw:
For ow:

HW
Desc.

Hardware
Evaluation

Environment

Benchmarks

For kw:
For ic:

For kh:
For ow:For oc:

For ic:
For oh:

For ow:
Sample

Mapping
Search Space

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

EDP

Decode

Decode

Compiler Mapping Search
(iteratively optimizing mappings)

Neural Accelerator Architecture Search

Mapping
Population

Accelerator
PopulationSample

Select
Best Fits:
Low EDP

Update
Sample Distribution Select

Best Fits:
Low EDP

Evolution
Evolution

For oh:
For ic:

For kw:
For ow:

HW
Desc.

Hardware
Evaluation

Environment

Benchmarks

For kw:
For ic:

For kh:
For ow:For oc:

For ic:
For oh:

For ow:
Sample

Mapping
Search Space

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

EDP

Decode

Decode

Accelerator Architecture Search
2. Select best fits based EDP

using corresponding
searched mappings

Neural Accelerator Architecture Search

Mapping
Population

Accelerator
PopulationSample

Select
Best Fits:
Low EDP

Update
Sample Distribution Select

Best Fits:
Low EDP

Update
Sample Distribution

Evolution
Evolution

For oh:
For ic:

For kw:
For ow:

HW
Desc.

Hardware
Evaluation

Environment

Benchmarks

For kw:
For ic:

For kh:
For ow:For oc:

For ic:
For oh:

For ow:
Sample

Mapping
Search Space

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

EDP

Decode

Decode

Accelerator Architecture Search
3. Update 𝜇𝜇𝐴𝐴,𝜎𝜎𝐴𝐴, Σ𝐴𝐴 to

increase the likelihood
around best fits

Neural Accelerator Architecture Search

Mapping
Population

Accelerator
PopulationSample Best

Architecture

Select
Best Fits:
Low EDP

Best
Mapping

Update
Sample Distribution Select

Best Fits:
Low EDP

Update
Sample Distribution

Evolution
Evolution

For oh:
For ic:

For kw:
For ow:

HW
Desc.

Hardware
Evaluation

Environment

Benchmarks

For kw:
For ic:

For kh:
For ow:For oc:

For ic:
For oh:

For ow:
Sample

Mapping
Search Space

Accelerator
Architecture
Search Space

HW Perf.
Estimation

(MAESTRO)

EDP

Decode

Decode

Compiler Mapping Search
(iteratively optimizing mappings)

Accelerator Architecture Search
(iteratively optimizing accelerator)

• Index-based Encoding
• Increment/Decrement of index value does not convey any physical

information

Encoding Non-numerical Parameters

Non-Numerical Non-NumericalNon-Numerical

Non-Numerical Parameter
Loop Orders

Numerical Encoding Value
Index

CRXKYS 0

CXYRSK 1

… …

Hardware Encoding Vector
L2 L1 #PE BW #Dim Dim Sizes Parallel Dims

Mapping Encoding Vector
Loop OrdersLoop Orders Tiling Sizes

Encoding Non-numerical Parameters
Hardware Encoding Vector

L2 L1 #PE BW #Dim Dim Sizes Parallel Dims
Mapping Encoding Vector

Loop OrdersLoop Orders Tiling Sizes

Parallel Dims
K C Y’ X’ R S
4 6 2 2 3 1

Loop Order
K C Y’ X’ R S
3 5 2 4 5 1

Dimension
Importance

• Importance-based Encoding
1. Fix the dimension position in the encoding vectors
2. Optimizer assigns numerical importance to these dimensions

• by random sampling based on multivariate normal distribution, the same as
other numerical parameters such as array sizes

Encoding Non-numerical Parameters
Hardware Encoding Vector

L2 L1 #PE BW #Dim Dim Sizes Parallel Dims
Mapping Encoding Vector

Loop OrdersLoop Orders Tiling Sizes

Parallel Dims
K C Y’ X’ R S
4 6 2 2 3 1

Loop Order
K C Y’ X’ R S
3 5 2 4 5 1

Dimension
Importance

C K R X’ Y’ S
6 4 3 2 2 1

Sort
C R X’ K Y’ S
5 5 4 3 2 1

Sort

• Importance-based Encoding
3. Sort the dimensions by the importance value in decreasing order

Encoding Non-numerical Parameters

Parallel Dims
K C Y’ X’ R S
4 6 2 2 3 1

C K R X’ Y’ S
6 4 3 2 2 1

Parallel-For c in range(16):
For r in range(3):
For x’ in range(7):
Parallel-For k in range(16):
For y’ in range(7):
For s in range(3):

Sort

Other Connectivity Parameters
#Dim Size[0] Size[1] Size[2]

2 16 16 -

Tiling Sizes
K C Y’ X’ R S
- - 7 7 3 3

Loop Order
K C Y’ X’ R S
3 5 2 4 5 1

C R X’ K Y’ S
5 5 4 3 2 1

Sort

Decode

choose first
2 dimensions Outermost Innermost

Outermost

Innermost

C
R
X
K
Y
S

Hardware Encoding Vector
L2 L1 #PE BW #Dim Dim Sizes Parallel Dims

Dimension
Importance

Mapping Encoding Vector
Loop OrdersLoop Orders Tiling Sizes

Evaluation
• Design Spaces of NAAS

• 4 resource constraints: EdgeTPU, NVDLA, Eyeriss, ShiDianNao
• NAAS searches #PEs at stride of 8, buffer sizes at stride of 16B, array

sizes at stride of 2

• CNN Benchmarks
• Classic large-scale networks: VGG16, ResNet50, UNet
• Light-weight mobile networks: MobileNetV2, SqueezeNet, MNasNet

• Evaluation Settings
• Large-scale NN with more hardware resources (EdgeTPU, NVDLA

with 1024 PEs)
• Light-weight NN with limited hardware resources (ShiDianNao,

Eyeriss, NVDLA with 256 PEs)

Learning Curves

• As the optimization continues, the EDP mean of NAAS
candidates decreases.

• NAAS gradually improves the range of hardware selections.

Search Beyond Architecture Sizing

• Compared to searching the architectural sizing only (e.g.,
NASAIC, NHAS), searching the connectivity parameters and
mapping strategies as well achieves considerable EDP
reduction.

NAAS offers better solution than baseline

Jointly Optimize NN, Mapping, Accelerator

For epoch_naas in range(max_naas_epochs):

accelerators = NAAS_generate_hardware()

For hw in accelerators:

For epoch_ofa in range(max_ofa_epochs):

networks = OFA_generate_networks(accuracy)

For nn in networks:

map = NAAS_optimize_mappings(hw, nn)

edp = NAAS_get_edp(hw, nn, map)

OFA_update_optimizer(nn, edp)

best_nn, best_map, best_edp = OFA_update_best(nn, map, edp)

NAAS_update_optimizer(hw, best_nn, best_map, best_edp)

Evaluation
• Design Space of NAS

• Once-For-All ResNet NAS
• 3 width multiplier choices: 0.65, 0.8, 1.0
• 18 residual blocks at maximum
• 3 reduction ratios in each residual block: 0.2, 0.25, 0.35
• Input image size ranges from 128 to 256 at strid of 16

Top-1 Accuracy vs. Normalized EDP

74

75

76

77

78

79

80

0 0.5 1 1.5 2

To
p-

1
Ac

cu
ra

cy

Normalized EDP

Eyeriss
NAAS (accelerator-compiler co-search)
NAAS (accelerator-compiler-NN co-search)

ResNet-50
on ImageNet

4.42×

+2.7%

Global Buffer

Network-On-Chip (NoC)

Fe
at

ur
e

M
ap

Weight

X0

BroadCast

Br
oa

dc
as

t

To/From DRAM

K0 K1 K9

X1

X17

Output
Buffer

PE
X2

Array Size 18 x 10

Dataflow K-X’ Parallel

L1 Buffer 496 B

L2 Buffer 107 KB

Local
Accumulate

Compared to NASAIC

Search
Approach Arch Cifar-10

Accuracy
Latency
(cycles)

Energy
(nJ)

EDP
(cycles-nJ)

NASAIC
NVDLA 93.2

3e5 1e9 3e14
ShiDianNao 91.1

NAAS NVDLA 93.2 8e4 2e9 2e14

Search
Approach

Co-Search
Cost (Gds)

NN Training
Cost (Gds)

Total Cost
(Gds) AWS Cost CO2

Emission

NASAIC 6000N 16 N 6000N $ 441, 000N 41, 000N lbs

NHAS 12+4N 16 N 12+20N $ 1, 500N 150N lbs

NAAS <0.25N 50 < 50 + 0.25N < $ 18N < 2N lbs

• Gds: GPU days. N: the number of deployment scenarios.
• AWS cost $75/Gd, CO2 emission is 7.5 lbs/Gd.

Neural Accelerator Architecture Search
• Design spaces of hardware, compiler, and neural networks are

tightly entangled, joint-optimization is better than separate
optimization.

• Optimize both numerical parameters and non-numerical
parameters, such as PE connectivity and loop order.
Importance-based encoding helps optimize non-numerical
parameters.

Non expert Neural Accelerator
Architecture Search

+
Neural Networks

AI Hardware

Machine learning expert
Hardware expert

https://tinyml.mit.edu

https://tinyml.mit.edu/

	Slide Number 1
	Slide Number 2
	Bio
	Accelerating Deep Learning Computing
	Data Driven Approach is Desirable
	Design Spaces
	Design spaces are tightly entangled
	Joint Search Accelerator and Neural Network
	Architecture Design Spaces
	Architecture Design Spaces
	Convolution Loop Nests
	From Computation Loops To Hardware
	Encoding Accelerator and Mappings
	Neural Accelerator Architecture Search
	Neural Accelerator Architecture Search
	Neural Accelerator Architecture Search
	Neural Accelerator Architecture Search
	Neural Accelerator Architecture Search
	Neural Accelerator Architecture Search
	Neural Accelerator Architecture Search
	Neural Accelerator Architecture Search
	Neural Accelerator Architecture Search
	Neural Accelerator Architecture Search
	Neural Accelerator Architecture Search
	Encoding Non-numerical Parameters
	Encoding Non-numerical Parameters
	Encoding Non-numerical Parameters
	Encoding Non-numerical Parameters
	Evaluation
	Learning Curves
	Search Beyond Architecture Sizing
	NAAS offers better solution than baseline
	Jointly Optimize NN, Mapping, Accelerator
	Evaluation
	Top-1 Accuracy vs. Normalized EDP
	Compared to NASAIC
	Neural Accelerator Architecture Search

